A216674 Total number of solutions to the equation x^2+k*y^2 = n with x > 0, y > 0, k >= 0, or 0 if infinite. (Order does not matter for the equation x^2+y^2 = n).
0, 1, 1, 0, 2, 2, 2, 3, 0, 3, 3, 4, 5, 3, 3, 0, 6, 5, 5, 6, 6, 5, 4, 6, 0, 5, 6, 8, 8, 5, 6, 8, 9, 7, 5, 0, 10, 6, 6, 10, 11, 6, 8, 9, 11, 7, 6, 10, 0, 8, 8, 14, 11, 10, 8, 10, 13, 9, 8, 10, 14, 7, 9, 0, 14, 9, 10, 14, 12, 10, 8, 15, 17, 9, 9, 16, 12, 8, 11, 14, 0
Offset: 1
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
a(n)=if(issquare(n),return(0));sum(y=ceil(sqrt(n/2-1/4)), sqrtint(n-1),issquare(n-y^2))+sum(k=2,n-1,sum(y=1,sqrtint((n-1)\k), issquare(n-k*y^2))) \\ Charles R Greathouse IV, Sep 14 2012
-
PARI
for(n=1, 100, sol=0; for(k=0, n, for(x=1, n, if((issquare(n-k*x*x)&&n-k*x*x>0&&k>=2)||(issquare(n-x*x)&&n-x*x>0&&k==1&&x*x<=n-x*x), sol++))); if(issquare(n),print1(0", "),print1(sol", "))) /* V. Raman, Oct 16 2012 */
Extensions
Ambiguity in name corrected by V. Raman, Oct 16 2012
Comments