A216675 Number of ways one can draw arrows between adjacent nodes of an n X n grid such that each node has one outgoing and one incoming arrow.
0, 4, 0, 1296, 0, 45265984, 0, 168709341081856, 0, 66865709036047973991424, 0, 2815414274858422422282241600000000, 0, 12589335654221209921194197564847684000000000000, 0, 5977481098898922857923760209743284068237948337696882106105856, 0
Offset: 1
Keywords
Examples
For a 1 X 1 grid, there is no such possibility. For a 2 X 2 grid, on can draw arrows between 2 pairs of nodes in horizontal or vertical sense, and the clockwise and counterclockwise cyclic "permutation" of the 4 nodes. For a 3 X 3 grid, there is no possibility, neither for a 5 X 5 grid.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..50 (terms n = 1..30 from Adam P. Goucher)
- Project Euler, Problem 393: Migrating ants.
Crossrefs
Programs
-
Mathematica
Table[If[Mod[n,2]==0,Det[MapIndexed[(#1 I^Mod[Total[#2],2])&, Normal[AdjacencyMatrix[GridGraph[{n,n}]]],{2}]],0],{n,1,20}] (* Adam P. Goucher, Aug 01 2013 *)
-
Python
from sympy.abc import x from sympy import resultant, chebyshevu, I def A216675(n): return 0 if n&1 else resultant(chebyshevu(n,x/2),chebyshevu(n,I*x/2)) # Chai Wah Wu, Nov 07 2023
Formula
a(2n) = A004003(n)^2; a(2n + 1) = 0. - Adam P. Goucher, Aug 01 2013
Extensions
Terms beyond a(5) from R. H. Hardin, Sep 15 2012
Terms beyond a(8) from Adam P. Goucher, Aug 01 2013
Comments