cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216678 On an n X n grid, number of ways to draw arrows between adjacent nodes such that each node has one outgoing and one incoming arrow, of which the one is not the opposite of the other (i.e., without 2-loops).

Original entry on oeis.org

0, 2, 0, 88, 0, 207408, 0, 22902801416, 0, 112398351350823112, 0, 24075116871728596710774372
Offset: 1

Views

Author

M. F. Hasler, Sep 13 2012

Keywords

Comments

"Adjacent" is meant in the sense of von Neumann neighborhoods (4 neighbors for "interior" nodes, 3 resp. 2 for nodes on the borders resp. in the corners).
Or: Number of permutations of an n X n array, with each element moving exactly one horizontally or vertically and without 2-loops.

Examples

			For a 1 X 1 grid, there is no such permutation or possibility.
For a 2 X 2 grid, on has the clockwise and counterclockwise cyclic "permutation" of the 4 nodes. (It is not allowed to draw arrows between 2 pairs of nodes in horizontal or vertical sense since, e.g., the arrow from the first to the second node is the opposite of the arrow from the second to the first node.)
For a 3 X 3 grid, there is no possibility, neither for a 5 X 5 grid.
		

Crossrefs

See A216675 for the same problem without the additional restriction.
Cf. A216796, A216797, A216798, A216799, A216800 for more general n X k grids.

Extensions

Terms beyond a(5) computed by R. H. Hardin, Sep 15 2012