This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216686 #18 Oct 01 2012 06:50:55 %S A216686 1,2,4,5,8,10,16,17,20,32,40,41,58,64,80,128,160,185,197,219,254,256, %T A216686 281,320,377,512,589,640,843,917,964,1024,1247,1280,1652,1707,1804, %U A216686 1825,2048,2074,2157,2519,2560,2637,2642,2727,2771,3614,3755,3786,4046,4096,4227 %N A216686 Numbers n such that n appears in the partial sums of the m-almost primes, where m=bigomega(n). %C A216686 A013918 is a subsequence. - _Zak Seidov_, Sep 17 2012 %C A216686 Or: Numbers n equal to the sum of the first k numbers x having bigomega(x)=bigomega(n), for some k. - _M. F. Hasler_, Sep 23 2012 %e A216686 2 is in the sequence because 2 appears in A007504. %e A216686 4 is in the sequence because 4 appears in A062198. %e A216686 5 is in the sequence because 5 appears in A007504. %e A216686 6 is not in the sequence because 6 is not in A062198. %e A216686 8 is in the sequence because 8 appears in A086062, %e A216686 10 is in the sequence because 10 appears in A062198. %p A216686 alm := proc(n,m) # n-th m-almost prime %p A216686 option remember; %p A216686 if n =1 then %p A216686 2^m ; %p A216686 else %p A216686 for a from procname(n-1,m)+1 do %p A216686 if numtheory[bigomega](a) = m then %p A216686 return a; %p A216686 end if; %p A216686 end do: %p A216686 end if; %p A216686 end proc: %p A216686 almP := proc(n,m) #n-th partial sum of the m-almost primes %p A216686 add(alm(i,m),i=1..n) ; %p A216686 end proc: %p A216686 isA216686 := proc(n) # is n in the sequence? %p A216686 local m ,k,ps; %p A216686 m := numtheory[bigomega](n) ; %p A216686 for k from 1 do %p A216686 ps := almP(k,m) ; %p A216686 if ps = n then %p A216686 return true; %p A216686 elif ps > n then %p A216686 return false; %p A216686 end if; %p A216686 end do: %p A216686 end proc: %p A216686 for n from 1 to 4300 do %p A216686 if isA216686(n) then %p A216686 printf("%d,",n) ; %p A216686 end if; %p A216686 end do: # _R. J. Mathar_, Sep 14 2012 %o A216686 (PARI) is_A216686(n)={ my(m=bigomega(n),t); while(n>0, while(bigomega(t++)!=m,); n-=t); !n} \\ - _M. F. Hasler_, Sep 23 2012 %Y A216686 Cf. A001222, A007504, A013918, A062198, A092190, A086052, A086062. %K A216686 nonn,easy %O A216686 1,2 %A A216686 _Gerasimov Sergey_, Sep 13 2012 %E A216686 Corrected by _R. J. Mathar_, Sep 14 2012