This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216688 #38 Oct 31 2024 06:48:48 %S A216688 1,1,1,7,25,121,841,4831,40657,325585,2913841,29910871,301088041, %T A216688 3532945417,41595396025,531109561711,7197739614241,100211165640481, %U A216688 1507837436365537,23123578483200295,376697477235716281,6348741961892933401,111057167658053740201,2032230051717594032767 %N A216688 Expansion of e.g.f. exp( x * exp(x^2) ). %H A216688 Vincenzo Librandi, <a href="/A216688/b216688.txt">Table of n, a(n) for n = 0..200</a> %H A216688 Vaclav Kotesovec, <a href="/A216688/a216688.pdf">Asymptotic solution of the equations using the Lambert W-function</a> %F A216688 a(n) = n!*Sum_{m=floor((n+1)/2)..n} (2*m-n)^(n-m)/((2*m-n)!*(n-m)!). - _Vladimir Kruchinin_, Mar 09 2013 %F A216688 From _Vaclav Kotesovec_, Aug 06 2014: (Start) %F A216688 a(n) ~ n^n / (r^n * exp((2*r^2*n)/(1+2*r^2)) * sqrt(3+2*r^2 - 2/(1 + 2*r^2))), where r is the root of the equation r*exp(r^2)*(1+2*r^2) = n. %F A216688 (a(n)/n!)^(1/n) ~ exp(1/(3*LambertW(2^(1/3)*n^(2/3)/3))) * sqrt(2/(3*LambertW(2^(1/3)*n^(2/3)/3))). %F A216688 (End) %t A216688 With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x^2]], {x, 0, nn}], x] Range[0, nn]!] (* _Bruno Berselli_, Sep 14 2012 *) %o A216688 (PARI) %o A216688 x='x+O('x^66); %o A216688 Vec(serlaplace(exp( x * exp(x^2) ))) %o A216688 /* _Joerg Arndt_, Sep 14 2012 */ %o A216688 (PARI) a(n) = n!*sum(k=0, n\2, (n-2*k)^k/(k!*(n-2*k)!)); \\ _Seiichi Manyama_, Aug 18 2022 %Y A216688 Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216689 (e.g.f. exp(x*exp(x)^2)). %Y A216688 Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))). %K A216688 nonn %O A216688 0,4 %A A216688 _Joerg Arndt_, Sep 14 2012