This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216689 #32 Oct 31 2024 08:55:49 %S A216689 1,1,5,25,153,1121,9373,87417,898033,10052353,121492341,1573957529, %T A216689 21729801481,318121178337,4917743697805,79981695655801, %U A216689 1364227940101857,24335561350365953,452874096174214117,8772713803852981785,176541611843378273401,3684142819311127955041,79596388271096140589949 %N A216689 Expansion of e.g.f. exp( x * exp(x)^2 ). %H A216689 Vincenzo Librandi, <a href="/A216689/b216689.txt">Table of n, a(n) for n = 0..200</a> %H A216689 Vaclav Kotesovec, <a href="http://oeis.org/A216688/a216688.pdf">Asymptotic solution of the equations using the Lambert W-function</a> %F A216689 O.g.f.: Sum_{n>=0} x^n / (1 - 2*n*x)^(n+1). - _Paul D. Hanna_, Aug 02 2014 %F A216689 a(n) = Sum_{k=0..n} binomial(n,k) * (2*k)^(n-k) for n>=0. - _Paul D. Hanna_, Aug 02 2014 %F A216689 From _Vaclav Kotesovec_, Aug 06 2014: (Start) %F A216689 a(n) ~ n^n / (exp(2*n*r/(1+2*r)) * r^n * sqrt((1+6*r+4*r^2)/(1+2*r))), where r is the root of the equation r*(1+2*r)*exp(2*r) = n. %F A216689 (a(n)/n!)^(1/n) ~ exp(1/(2*LambertW(sqrt(n/2)))) / LambertW(sqrt(n/2)). %F A216689 (End) %t A216689 With[{nn = 25}, CoefficientList[Series[Exp[x Exp[x]^2], {x, 0, nn}], x] Range[0, nn]!] (* _Bruno Berselli_, Sep 14 2012 *) %o A216689 (PARI) %o A216689 x='x+O('x^66); %o A216689 Vec(serlaplace(exp( x * exp(x)^2 ))) %o A216689 /* _Joerg Arndt_, Sep 14 2012 */ %o A216689 (PARI) /* From o.g.f.: */ %o A216689 {a(n)=local(A=1);A=sum(k=0, n, x^k/(1 - 2*k*x +x*O(x^n))^(k+1));polcoeff(A, n)} %o A216689 for(n=0,25,print1(a(n),", ")) /* _Paul D. Hanna_, Aug 02 2014 */ %o A216689 (PARI) /* From binomial sum: */ %o A216689 {a(n)=sum(k=0,n, binomial(n,k)*(2*k)^(n-k))} %o A216689 for(n=0,30,print1(a(n),", ")) /* _Paul D. Hanna_, Aug 02 2014 */ %Y A216689 Cf. A216507 (e.g.f. exp(x^2*exp(x))), A216688 (e.g.f. exp(x*exp(x^2))). %Y A216689 Cf. A000248 (e.g.f. exp(x*exp(x))), A003725 (e.g.f. exp(x*exp(-x))). %Y A216689 Cf. A240165 (e.g.f. exp(x*(1+exp(x)^2))). %K A216689 nonn %O A216689 0,3 %A A216689 _Joerg Arndt_, Sep 14 2012