cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216704 a(n) = Product_{k=1..n} (64 - 8/k).

This page as a plain text file.
%I A216704 #26 Aug 17 2025 03:50:24
%S A216704 1,56,3360,206080,12776960,797282304,49963024384,3140532961280,
%T A216704 197853576560640,12486759054049280,789163172215914496,
%U A216704 49932506169297862656,3162392057388864634880,200447004252955727626240,12714067126901763295150080,806919460320698577132191744
%N A216704 a(n) = Product_{k=1..n} (64 - 8/k).
%C A216704 This sequence is generalizable: Product_{k=1..n} (q^2 - q/k) = (q^n/n!) * Product_{k=0..n-1} (q*k + q-1) = expansion of (1- x*q^2)^((1-q)/q).
%H A216704 Harvey P. Dale, <a href="/A216704/b216704.txt">Table of n, a(n) for n = 0..553</a>
%F A216704 From _Amiram Eldar_, Aug 17 2025: (Start)
%F A216704 a(n) = 64^n * Gamma(n+7/8) / (Gamma(7/8) * Gamma(n+1)).
%F A216704 a(n) ~ c * 64^n / n^(1/8), where c = 1/Gamma(7/8) = 1/A203146 = 0.917723... . (End)
%p A216704 seq(product(64-8/k, k=1.. n), n=0..20);
%p A216704 seq((8^n/n!)*product(8*k+7, k=0.. n-1), n=0..20);
%t A216704 Table[Product[64-8/k,{k,n}],{n,0,20}] (* _Harvey P. Dale_, Sep 23 2017 *)
%Y A216704 Cf. A004988, A049382, A004994, A203146, A216702, A216703.
%K A216704 nonn
%O A216704 0,2
%A A216704 _Michel Lagneau_, Sep 16 2012