cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216709 a(n) is the integer closest to Riemann's prime counting function R(n*10^6) minus the prime counting function pi(n*10^6).

This page as a plain text file.
%I A216709 #36 Feb 16 2025 08:33:18
%S A216709 29,-9,0,33,-64,24,-38,-6,-53,88,-3,-46,-51,25,34,1,-18,-117,-46,-36,
%T A216709 18,-77,27,39,3,33,-6,2,7,-41,-139,-61,-104,-108,106,135,198,190,3,
%U A216709 -84,-102,38,50,52,55,-131,-134,-16,99,-67,-53,-90,-49,-9,127,72,-13,50,-17,39,-85,114
%N A216709 a(n) is the integer closest to Riemann's prime counting function R(n*10^6) minus the prime counting function pi(n*10^6).
%C A216709 H. M. Edwards gives a(1)=30 instead of 29; he may have considered 1 a prime.
%D A216709 H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), page 35.
%H A216709 Vincenzo Librandi, <a href="/A216709/b216709.txt">Table of n, a(n) for n = 1..1000</a>
%H A216709 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RiemannPrimeCountingFunction.html">Riemann Prime Counting Function</a>.
%t A216709 Table[ Round[ RiemannR[n*10^6] - PrimePi[n*10^6]], {n, 1, 40}]
%Y A216709 Cf. A057794.
%K A216709 sign
%O A216709 1,1
%A A216709 _Jean-François Alcover_, Sep 17 2012
%E A216709 Corrected and extended by _Vincenzo Librandi_, Jul 19 2013