cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A165962 Number of circular permutations of length n without modular 3-sequences.

Original entry on oeis.org

1, 5, 18, 95, 600, 4307, 35168, 321609, 3257109, 36199762, 438126986, 5736774126, 80808984725, 1218563180295, 19587031966352, 334329804347219, 6039535339644630, 115118210694558105, 2308967760171049528, 48613722701436777455, 1072008447320752890459
Offset: 3

Views

Author

Isaac Lambert, Oct 01 2009

Keywords

Comments

Circular permutations are permutations whose indices are from the ring of integers modulo n. Modular 3-sequences are of the following form: i,i+1,i+2, where arithmetic is modulo n.

Examples

			For n=4 the a(4)=5 solutions are (0,1,3,2), (0,2,1,3), (0,2,3,1), (0,3,1,2) and (0,3,2,1).
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012. - N. J. A. Sloane, Sep 15 2012

Crossrefs

First column of A216722. Cf. A216723. - N. J. A. Sloane, Sep 15 2012

Programs

  • Mathematica
    f[i_,n_,k_]:=If[i==0&&k==0,1,If[i==n&&n==k,1,Binomial[k-1,k-i]*Binomial[n-k-1,k-i-1]+2*Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i-1]+Binomial[k-1,k-i-1]*Binomial[n-k-1,k-i]]];
    w1[i_,n_,k_]:=If[n-2k+i<0,0,If[n-2k+i==0,1,(n-2k+i-1)!]];
    a[n_,k_]:=Sum[f[i,n,k]*w1[i,n,k],{i,0,k}];
    A165962[n_]:=(n-1)!+Sum[(-1)^k*a[n,k],{k,1,n}];
    Table[A165962[n],{n,3,23}] (* David Scambler, Sep 18 2012 *)

Formula

This sequence can be related to A165961 by the use of auxiliary sequences (and the auxiliary sequences can themselves be calculated by recurrence relations).

A216722 Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 1 and length 3 (n >= 3, 0 <= k <= n).

Original entry on oeis.org

1, 0, 0, 1, 5, 0, 0, 0, 1, 18, 5, 0, 0, 0, 1, 95, 18, 6, 0, 0, 0, 1, 600, 84, 28, 7, 0, 0, 0, 1, 4307, 568, 116, 40, 8, 0, 0, 0, 1, 35168, 4122, 810, 156, 54, 9, 0, 0, 0, 1, 321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1
Offset: 3

Views

Author

N. J. A. Sloane, Sep 15 2012

Keywords

Examples

			Triangle begins:
       1,     0,    0,    1;
       5,     0,    0,    0,   1;
      18,     5,    0,    0,   0,  1;
      95,    18,    6,    0,   0,  0,  1;
     600,    84,   28,    7,   0,  0,  0, 1;
    4307,   568,  116,   40,   8,  0,  0, 0, 1;
   35168,  4122,  810,  156,  54,  9,  0, 0, 0, 1;
  321609, 33910, 5975, 1100, 205, 70, 10, 0, 0, 0, 1;
  ...
		

References

  • Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.

Crossrefs

Columns 1..2 are A165962, A216723.
Row sums are A000142(n-1).
Showing 1-2 of 2 results.