This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216724 #24 Mar 06 2022 08:41:38 %S A216724 1,1,2,3,3,24,0,100,15,0,5,594,108,18,0,4389,504,119,21,0,7,35744, %T A216724 3520,960,64,32,0,325395,31077,5238,927,207,27,0,9,3288600,288300, %U A216724 42050,8800,900,100,50,0,36489992,2946141,409827,59785,9174,1518,319,33,0,11 %N A216724 Triangle read by rows: T(n,k) is the number of permutations of [1..n] with k modular progressions of rise 2, distance 1 and length 3 (n >= 0, k >= 0). %D A216724 Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, Congressus Numerantium, Vol. 208 (2011), pp. 147-165. %H A216724 Alois P. Heinz, <a href="/A216724/b216724.txt">Rows n = 0..18, flattened</a> %e A216724 Triangle begins: %e A216724 1 %e A216724 1 %e A216724 2 %e A216724 3 3 %e A216724 24 0 %e A216724 100 15 0 5 %e A216724 594 108 18 0 %e A216724 4389 504 119 21 0 7 %e A216724 35744 3520 960 64 32 0 %e A216724 325395 31077 5238 927 207 27 0 9 %e A216724 3288600 288300 42050 8800 900 100 50 0 %e A216724 ... %p A216724 b:= proc(s, x, y, n) option remember; expand(`if`(s={}, 1, add( %p A216724 `if`(x>0 and irem(n+x-y, n)=2 and irem(n+y-j, n)=2, z, 1)* %p A216724 b(s minus {j}, y, j, n), j=s))) %p A216724 end: %p A216724 T:= n-> (p-> seq(coeff(p, z, i), i=0..max(0, %p A216724 iquo(n-1,2)*2-1)))(b({$1..n}, 0$2, n)): %p A216724 seq(T(n), n=0..11); # _Alois P. Heinz_, Apr 13 2021 %t A216724 b[s_, x_, y_, n_] := b[s, x, y, n] = Expand[If[s == {}, 1, Sum[ %t A216724 If[x>0 && Mod[n + x - y, n] == 2 && Mod[n + y - j, n] == 2, z, 1]* %t A216724 b[s~Complement~{j}, y, j, n], {j, s}]]]; %t A216724 T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Max[0, %t A216724 Quotient[n - 1, 2]*2 - 1]}]][b[Range[n], 0, 0, n]]; %t A216724 Table[T[n], {n, 0, 11}] // Flatten (* _Jean-François Alcover_, Mar 06 2022, after _Alois P. Heinz_ *) %Y A216724 Column 1 is A174073. %Y A216724 Row sums are A000142. %Y A216724 Cf. A216716, A216718, A216719, A216722. %K A216724 nonn,tabf %O A216724 0,3 %A A216724 _N. J. A. Sloane_, Sep 15 2012 %E A216724 More terms from _Alois P. Heinz_, Apr 13 2021