A216731 Primes p > 3 such that there is no power of 3 in the open interval (2p, 3p).
5, 7, 17, 19, 23, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Christian Salas, Cantor Primes as Prime-Valued Cyclotomic Polynomials, arXiv preprint arXiv:1203.3969 [math.NT], 2012.
Programs
-
Maple
isA216731 := proc(n) if isprime(n) then floor(log[3](2*n)) = floor(log[3](3*n)) ; else false; end if; end proc: for n from 2 to 250 do p := ithprime(n) ; if isA216731(p) then printf("%d,",p) ; end if; end do: # R. J. Mathar, Sep 17 2012
-
Mathematica
isA216731[n_] := If[PrimeQ[n], Floor[Log[3, 2*n]] == Floor[Log[3, 3*n]], False]; Reap[For[n = 2, n <= 100, n++, p = Prime[n]; If[isA216731[p], Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Mar 06 2014, after R. J. Mathar *)
Extensions
Name corrected by Robert Israel, May 11 2025
Comments