This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216755 #22 Aug 27 2015 11:35:06 %S A216755 1,1,5,9,2,8,7,9,4,1,8,9,8,8,4,9,7,1,2,9,5,8,1,9,1,1,5,9,2,8,7,9,4,1, %T A216755 8,9,8,8,4,9,7,1,2,9,5,8,1,9,1,1,5,9,2,8,7,9,4,1,8,9,8,8,4,9,7,1,2,9, %U A216755 5,8,1,9,1,1,5,9,2,8,7,9,4,1,8,9,8,8,4,9,7,1,2,9,5,8,1,9,1,1,5,9 %N A216755 Digital root of the fifth power of Fibonacci(n). %C A216755 This sequence is periodic with period 24, i.e. gcd(period of digital roots of squares of Fibonacci, period of digital roots of cubes of Fibonacci) %H A216755 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1). %F A216755 a(n) = A010888(A056572(n)). %F A216755 a(n) = a(n-4) - a(n-12) + a(n-16). - _R. J. Mathar_, Sep 15 2012 %F A216755 G.f. x*( -1-x-5*x^2-9*x^3-x^4-7*x^5-2*x^6-2*x^8+7*x^9-x^10-5*x^12-8*x^13-x^14-9*x^15 ) / ( (x-1) *(1+x) *(x^2+1) *(x^4+1) *(x^8-x^4+1) ). - _R. J. Mathar_, Sep 15 2012 %t A216755 (* First run program for A211821 to define digitalRoot *) Table[digitalRoot[Fibonacci[n]^5], {n, 90}] (* _Alonso del Arte_, Sep 15 2012 *) %t A216755 LinearRecurrence[{0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1},{1, 1, 5, 9, 2, 8, 7, 9, 4, 1, 8, 9, 8, 8, 4, 9},100] (* _Ray Chandler_, Aug 27 2015 *) %Y A216755 Cf. A030132, A216676, A216699 %K A216755 nonn,base %O A216755 1,3 %A A216755 _Ravi Bhandari_, Sep 15 2012