This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216763 #22 Mar 24 2014 02:09:23 %S A216763 0,1,2,1,2,3,2,2,3,2,3,4,3,2,3,4,3,3,4,3,4,3,3,4,3,4,5,4,3,4,3,4,5,4, %T A216763 3,4,5,4,4,5,4,3,4,5,4,4,5,4,5,4,4,5,4,4,5,4,5,4,4,5,4,5,6,5,4,5,4,4, %U A216763 5,4,5,6,5,4,5,4,5,6,5,4,5,6,5,4,5,4,5,6,5,4,5,6,5,5,6,5,4,5,6 %N A216763 The Lambda word generated by (1+sqrt(5))/2. %C A216763 A Lambda word is a symbolic sequence that encodes differences in the sequence i+j*t, where t is irrational, 1 < t < 2. This is the Fibonacci Lambda word, t = (1+sqrt(5))/2. The word is achieved by connecting the position numbers of the integers in order from a transpose of the array form of A216448 (0,0), (1,0), (0,1), (2,0), (1,1), and then encoding the vectors starting with (1,0) -> 0, (-1,1) -> 1, (2,-1) -> 2, (-1,1) -> 1. %C A216763 A Lambda word is a right infinite rich word on an infinite alphabet. %H A216763 N. Carey, <a href="http://dx.doi.org/10.1007/978-3-642-21590-2_4">On a class of locally symmetric sequences, The right infinite word Lambda Theta</a>, in Mathematics and Computation in Music in Lect. Notes in Comp. Sci., Vol. 6726, Springer, (2011), 42-55. %H A216763 N. Carey, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Carey/carey6.html">Lambda words: A class of rich words defined over an infinite alphabet</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.3.4. %t A216763 t = GoldenRatio; %t A216763 end = 100; %t A216763 x = Table[Ceiling[n*1/t], {n, 0, end}]; %t A216763 y = Table[Ceiling[n*t], {n, 0, end}]; %t A216763 tot[p_, q_] := Total[Take[x, p + 1]] + (p*q) + Total[Take[y, q + 1]] %t A216763 row[r_] := Table[tot[n, r], {n, 0, end - 1}] %t A216763 g = Grid[Table[row[n], {n, 0, IntegerPart[(end - 1)/t]}]]; %t A216763 pos[n_] := Reverse[Position[g, n][[1, Range[2, 3]]] - 1] %t A216763 d[n_] := (op[m_] := pos[m + 1] - pos[m]; %t A216763 Abs[Total[ContinuedFraction[op[n][[1]]/op[n][[2]]]]]) %t A216763 l = Prepend[Table[d[n], {n, 1, 249}], 0] %t A216763 (* _Norman Carey_, Sep 15 2012 *) %Y A216763 Cf. A216448, A216764. %K A216763 nonn %O A216763 0,3 %A A216763 _Norman Carey_, Sep 15 2012