A216764 The Lambda word generated by Pi - 2.
0, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 8, 1, 1, 1, 1, 1, 1, 1, 8, 9, 8, 1, 1, 1, 1, 1, 1, 8, 9, 8, 9, 8, 1, 1, 1, 1, 1, 8, 9, 8, 9, 8, 9, 8, 1, 1, 1, 1, 8, 9, 8, 9, 8, 9, 8, 9, 8, 1, 1, 1, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 1, 1
Offset: 0
Keywords
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..1000
- N. Carey, On a class of locally symmetric sequences, The right infinite word Lambda Theta, in Mathematics and Computation in Music in Lect. Notes in Comp. Sci., Vol. 6726, Springer, (2011), 42-55.
- N. Carey, Lambda words: A class of rich words defined over an infinite alphabet, Journal of Integer Sequences, Vol. 16 (2013), Article 13.3.4.
Crossrefs
Programs
-
Mathematica
t = Pi - 2; end = 100; x = Table[Ceiling[n*1/t], {n, 0, end}]; y = Table[Ceiling[n*t], {n, 0, end}]; tot[p_, q_] := Total[Take[x, p + 1]] + (p*q) + Total[Take[y, q + 1]] row[r_] := Table[tot[n, r], {n, 0, end - 1}] g = Grid[Table[row[n], {n, 0, IntegerPart[(end - 1)/t]}]]; pos[n_] := Reverse[Position[g, n][[1, Range[2, 3]]] - 1] d[n_] := (op[m_] := pos[m + 1] - pos[m]; Abs[Total[ContinuedFraction[op[n][[1]]/op[n][[2]]]]]) l = Prepend[Table[d[n], {n, 1, 249}], 0] (* Norman Carey, Sep 16 2012 *)
Comments