cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216783 Number of maximal triangle-free graphs with n vertices.

This page as a plain text file.
%I A216783 #38 Jun 03 2023 12:02:00
%S A216783 1,1,1,2,3,4,6,10,16,31,61,147,392,1274,5036,25617,164796,1337848,
%T A216783 13734745,178587364,2911304940,58919069858,1474647067521,
%U A216783 45599075629687
%N A216783 Number of maximal triangle-free graphs with n vertices.
%C A216783 A maximal triangle-free graph is a triangle-free graph so that the insertion of each new edge introduces a triangle. For graphs of order larger than 2 this is equivalent to being triangle-free and having diameter 2.
%D A216783 S. Brandt, G. Brinkmann and T. Harmuth, The Generation of Maximal Triangle-Free Graphs, Graphs and Combinatorics, 16 (2000), 149-157.
%H A216783 S. Brandt, G. Brinkmann and T. Harmuth, <a href="http://caagt.ugent.be/mtf/">MTF</a>.
%H A216783 Gunnar Brinkmann, Jan Goedgebeur and J.C. Schlage-Puchta, <a href="http://caagt.ugent.be/triangleramsey/">triangleramsey</a>.
%H A216783 Gunnar Brinkmann, Jan Goedgebeur, and Jan-Christoph Schlage-Puchta, <a href="http://arxiv.org/abs/1208.0501">Ramsey numbers R(K3,G) for graphs of order 10</a>, arXiv 1208.0501 (2012).
%H A216783 Jan Goedgebeur, <a href="https://arxiv.org/abs/1707.07581">On minimal triangle-free 6-chromatic graphs</a>, arXiv:1707.07581 [math.CO] (2017).
%H A216783 House of Graphs, <a href="https://houseofgraphs.org/meta-directory/maximal-triangle-free">Maximal triangle-free graphs</a>.
%Y A216783 Cf. A280020 (labeled graphs).
%K A216783 nonn
%O A216783 1,4
%A A216783 _Jan Goedgebeur_, Sep 18 2012
%E A216783 a(24) added by _Jan Goedgebeur_, Jun 05 2018