A216678
On an n X n grid, number of ways to draw arrows between adjacent nodes such that each node has one outgoing and one incoming arrow, of which the one is not the opposite of the other (i.e., without 2-loops).
Original entry on oeis.org
0, 2, 0, 88, 0, 207408, 0, 22902801416, 0, 112398351350823112, 0, 24075116871728596710774372
Offset: 1
For a 1 X 1 grid, there is no such permutation or possibility.
For a 2 X 2 grid, on has the clockwise and counterclockwise cyclic "permutation" of the 4 nodes. (It is not allowed to draw arrows between 2 pairs of nodes in horizontal or vertical sense since, e.g., the arrow from the first to the second node is the opposite of the arrow from the second to the first node.)
For a 3 X 3 grid, there is no possibility, neither for a 5 X 5 grid.
See
A216675 for the same problem without the additional restriction.
A216796
Number of permutations of an n X 4 array with each element moving exactly one horizontally or vertically and without 2-loops.
Original entry on oeis.org
0, 6, 8, 88, 292, 1774, 7676, 39844, 186996, 927134, 4460016, 21812696, 105716132, 514912230, 2501152692, 12167375908, 59142175940, 287602784246, 1398239939960, 6798750327544, 33055539575012, 160722650037822, 781448253270316
Offset: 1
Some solutions for n=4:
..4..0..3..7....4..0..3..7....1..2..3..7....1..5..3..7....4..0..1..2
..5..1..2.11....5..1..2.11....0..9..5..6....0..4..2.11....8..6..7..3
.12..8..6.15....9.13..6.15....4.10.11.15....9.10..6.15...12..5.11.15
.13..9.10.14....8.12.10.14....8.12.13.14....8.12.13.14...13..9.10.14
A216675
Number of ways one can draw arrows between adjacent nodes of an n X n grid such that each node has one outgoing and one incoming arrow.
Original entry on oeis.org
0, 4, 0, 1296, 0, 45265984, 0, 168709341081856, 0, 66865709036047973991424, 0, 2815414274858422422282241600000000, 0, 12589335654221209921194197564847684000000000000, 0, 5977481098898922857923760209743284068237948337696882106105856, 0
Offset: 1
For a 1 X 1 grid, there is no such possibility.
For a 2 X 2 grid, on can draw arrows between 2 pairs of nodes in horizontal or vertical sense, and the clockwise and counterclockwise cyclic "permutation" of the 4 nodes.
For a 3 X 3 grid, there is no possibility, neither for a 5 X 5 grid.
See
A216678 for the same problem with an additional constraint ("no 2-loops").
-
Table[If[Mod[n,2]==0,Det[MapIndexed[(#1 I^Mod[Total[#2],2])&, Normal[AdjacencyMatrix[GridGraph[{n,n}]]],{2}]],0],{n,1,20}] (* Adam P. Goucher, Aug 01 2013 *)
-
from sympy.abc import x
from sympy import resultant, chebyshevu, I
def A216675(n): return 0 if n&1 else resultant(chebyshevu(n,x/2),chebyshevu(n,I*x/2)) # Chai Wah Wu, Nov 07 2023
A216797
Number of permutations of an n X 5 array with each element moving exactly one horizontally or vertically and without 2-loops.
Original entry on oeis.org
0, 10, 0, 292, 0, 10140, 0, 361200, 0, 12911864, 0, 461788640, 0, 16516859104, 0, 590766585904, 0, 21130267285488, 0, 755777826856944, 0, 27032319708816080, 0, 966879797484085808, 0, 34582919761038885136, 0, 1236946249622251150000, 0
Offset: 1
Some solutions for n=4:
..1..2..7..8..3....5..0..1..4..9....5..0..3..4..9....1..6..7..2..3
..0..5..6..9..4...10..7..2..3.14....6..1..2.13..8....0..5..8..9..4
.11.12.13.14.19...15..6.13..8.19...11.12..7.14.19...15.10.11.14.19
.10.15.16.17.18...16.11.12.17.18...10.15.16.17.18...16.17.12.13.18
A216798
Number of permutations of an nX6 array with each element moving exactly one horizontally or vertically and without 2-loops.
Original entry on oeis.org
0, 22, 32, 1774, 10140, 207408, 1879040, 27918806, 302667484, 3991662992, 46492284664, 585384941184, 7016484369112, 86745644666352, 1051690689056356, 12908451995027824, 157213197102215752, 1924102649175445120
Offset: 1
Some solutions for n=4
..6..0..3..9..5.11....1..7..3..4..5.11....6..0..1..9..3..4....6..0..1..2..3..4
.12..1..2..8..4.10....0..6..2..8..9.10....7..8..2.10.16..5...12.13..7.10.16..5
.18..7.13.14.15.16...13.19.15.21.22.16...18.12.20.14.22.11...18.14..8..9.15.11
.19.20.21.22.23.17...12.18.14.20.23.17...19.13.21.15.23.17...19.20.21.22.23.17
A216799
Number of permutations of an n X 7 array with each element moving exactly one horizontally or vertically and without 2-loops.
Original entry on oeis.org
0, 42, 0, 7676, 0, 1879040, 0, 489300384, 0, 129127695440, 0, 34175930646380, 0, 9050948918328308, 0, 2397326535775801848, 0, 634999208667955702740, 0, 168198450029830487388264, 0, 44552431219619052902569084, 0
Offset: 1
Some solutions for n=4
..1..8..3..4..5..6.13....1..2..3..4.11.12..5....1..8..9..2..3.12..5
..0.15..2..9.10.11.12....0..7..8..9.10.19..6....0.15.10.11..4.19..6
..7.22.17.18.19.20.27...21.14.23.16.25.18.13....7.16.23.18.25.26.13
.14.21.16.23.24.25.26...22.15.24.17.26.27.20...14.21.22.17.24.27.20
Showing 1-6 of 6 results.
Comments