This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216822 #43 Oct 05 2022 17:19:27 %S A216822 1,5,13,29,37,61,73,157,181,193,277,313,397,421,457,541,561,613,661, %T A216822 673,733,757,877,997,1093,1153,1201,1213,1237,1289,1321,1381,1453, %U A216822 1621,1657,1753,1873,1905,1933,1993,2017,2137,2341,2473,2557,2593,2797,2857,2917 %N A216822 Numbers n such that 2^n == 2 (mod n*(n+1)). %C A216822 a(17) = 561 is the first composite number in the sequence. - _Charles R Greathouse IV_, Sep 19 2012 %C A216822 Intersection of { A015919(n) } and { A192109(n)-1 }. - _Max Alekseyev_, Apr 22 2013 %H A216822 V. Raman and Charles R Greathouse IV, <a href="/A216822/b216822.txt">Table of n, a(n) for n = 1..10000</a> (first 2000 terms from V. Raman) %H A216822 Mersenne Forum, <a href="http://mersenneforum.org/showthread.php?t=17198">Prime Conjecture</a> %t A216822 Select[Range[1, 10000], Mod[2^# - 2, # (# + 1)] == 0 &] (* _T. D. Noe_, Sep 19 2012 *) %t A216822 Join[{1},Select[Range[3000],PowerMod[2,#,#(#+1)]==2&]] (* _Harvey P. Dale_, Oct 05 2022 *) %o A216822 (PARI) is(n)=Mod(2,n*(n+1))^n==2; \\ _Charles R Greathouse IV_, Sep 19 2012 %o A216822 (Python) %o A216822 A216822_list = [n for n in range(1,10**6) if n == 1 or pow(2,n,n*(n+1)) == 2] # _Chai Wah Wu_, Mar 25 2021 %Y A216822 Cf. A069051 (prime n such that 2^n == 2 (mod n*(n-1))). %Y A216822 Cf. A217466 (prime terms of the sequence). %Y A216822 Cf. A217465 (composite terms of the sequence) %K A216822 easy,nonn %O A216822 1,2 %A A216822 _V. Raman_, Sep 17 2012 %E A216822 a(1)=1 prepended by _Max Alekseyev_, Dec 29 2017