cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216827 Numbers whose squares can be written neither as a^2 + b^2, nor as a^2 + 2*b^2, nor as a^2 + 3*b^2, nor as a^2 + 7*b^2, with a > 0 and b > 0.

Original entry on oeis.org

1, 47, 167, 311, 383, 479, 503, 647, 719, 839, 887, 983, 1151, 1223, 1319, 1487, 1511, 1559, 1823, 1847, 2063, 2209, 2351, 2399, 2663, 2687, 2903, 2999, 3023, 3167, 3191, 3359, 3407, 3527, 3671, 3863, 3911, 4007, 4079, 4583, 4679, 4703, 4751, 4871, 4919, 5039, 5087, 5351, 5519, 5591, 5711, 5879, 5927
Offset: 1

Views

Author

V. Raman, Sep 17 2012

Keywords

Comments

If a composite number C can be written in the form C = a^2+k*b^2, for some integers a and b, then every prime factor P (for C) being raised to an odd power can be written in the form P = c^2+k*d^2, for some integers c and d.
This statement is only true for k = 1, 2, 3.
For k = 7, with the exception of the prime factor 2, the statement mentioned above is true.

Crossrefs