cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216868 Nicolas's sequence whose positivity is equivalent to the Riemann hypothesis.

This page as a plain text file.
%I A216868 #52 Nov 07 2023 03:15:57
%S A216868 3,4,13,67,560,6095,87693,1491707,30942952,795721368,22614834943,
%T A216868 759296069174,28510284114397,1148788714239052,50932190960133487,
%U A216868 2532582753383324327,139681393339880282191,8089483267352888074399,512986500081861276401709,34658318003703434434962860
%N A216868 Nicolas's sequence whose positivity is equivalent to the Riemann hypothesis.
%C A216868 a(n) = p(n)# - floor(phi(p(n)#)*log(log(p(n)#))*exp(gamma)), where p(n)# is the n-th primorial, phi is Euler's totient function, and gamma is Euler's constant.
%C A216868 All a(n) are > 0 if and only if the Riemann hypothesis is true. If the Riemann hypothesis is false, then infinitely many a(n) are > 0 and infinitely many a(n) are <= 0. Nicolas (1983) proved this with a(n) replaced by p(n)#/phi(p(n)#)-log(log(p(n)#))*exp(gamma). Nicolas's refinement of this result is in A233825.
%C A216868 See A185339 for additional links, references, and formulas.
%C A216868 Named after the French mathematician Jean-Louis Nicolas. - _Amiram Eldar_, Jun 23 2021
%D A216868 J.-L. Nicolas, Petites valeurs de la fonction d'Euler et hypothèse de Riemann, in Seminar on Number Theory, Paris 1981-82 (Paris 1981/1982), Birkhäuser, Boston, 1983, pp. 207-218.
%H A216868 Amiram Eldar, <a href="/A216868/b216868.txt">Table of n, a(n) for n = 1..350</a>
%H A216868 J.-L. Nicolas, <a href="http://math.univ-lyon1.fr/~nicolas/petitsphi83.pdf">Petites valeurs de la fonction d'Euler</a>, J. Number Theory, Vol. 17, No.3 (1983), pp. 375-388.
%H A216868 J.-L. Nicolas, <a href="http://arxiv.org/abs/1202.0729">Small values of the Euler function and the Riemann hypothesis</a>, arXiv:1202.0729 [math.NT], 2012; Acta Arith., Vol. 155 (2012), pp. 311-321.
%F A216868 a(n) = prime(n)# - floor(phi(prime(n)#)*log(log(prime(n)#))*e^gamma).
%F A216868 a(n) = A002110(n) - floor(A005867(n)*log(log(A002110(n)))*e^gamma).
%F A216868 Limit_{n->oo} a(n)/p(n)# = 0.
%e A216868 prime(2)# = 2*3 = 6 and phi(6) = 2, so a(2) = 6 - floor(2*log(log(6))*e^gamma) = 6 - floor(2*0.58319...*1.78107...) = 6 - floor(2.07...) = 6 - 2 = 4.
%t A216868 primorial[n_] := Product[Prime[k], {k, n}]; Table[With[{p = primorial[n]}, p - Floor[EulerPhi[p]*Log[Log[p]]*Exp[EulerGamma]]], {n, 1, 20}]
%o A216868 (PARI) nicolas(n) = {p = 2; pri = 2;for (i=1, n, print1(pri - floor(eulerphi(pri)*log(log(pri))*exp(Euler)), ", ");p = nextprime(p+1);pri *= p;);} \\ _Michel Marcus_, Oct 06 2012
%o A216868 (PARI) A216868(n)={(n=prod(i=1,n,prime(i)))-floor(eulerphi(n)*log(log(n))*exp(Euler))}  \\ _M. F. Hasler_, Oct 06 2012
%Y A216868 Cf. A000010, A001620, A002110, A005867, A185339, A209079, A218245, A233825.
%K A216868 nonn
%O A216868 1,1
%A A216868 _Jonathan Sondow_, Sep 29 2012