This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216914 #17 Oct 20 2019 02:01:30 %S A216914 1,1,1,2,1,1,6,1,1,1,6,3,2,1,1,30,3,2,1,1,1,30,15,2,3,2,1,1,210,15,10, %T A216914 3,6,1,1,1,210,105,10,15,6,1,2,1,1,210,105,70,15,6,1,6,1,1,1,210,105, %U A216914 70,105,6,5,6,3,2,1,1,2310,105,70,105,42,5,30,3,2 %N A216914 The Gauss factorial N_n! restricted to prime factors for N >= 0, n >= 1, square array read by antidiagonals. %C A216914 The term Gauss factorial N_n! was introduced by J. B. Cosgrave and K. Dilcher (see references in A216919). It is closely related to the Gauss-Wilson theorem which was stated in Gauss' Disquisitiones Arithmeticae (§78). Restricting the factors of the Gauss factorial to primes gives the present sequence. %C A216914 Following the style of A034386 we will write N_n# for A(N,n) and call N_n# the Gauss primorial. %F A216914 N_n# = product_{1<=j<=N, GCD(j, n) = 1, j is prime} j. %e A216914 [n\N][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] %e A216914 ----------------------------------------------- %e A216914 [ 1] 1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210 %e A216914 [ 2] 1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105 %e A216914 [ 3] 1, 1, 2, 2, 2, 10, 10, 70, 70, 70, 70 %e A216914 [ 4] 1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105 %e A216914 [ 5] 1, 1, 2, 6, 6, 6, 6, 42, 42, 42, 42 %e A216914 [ 6] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 %e A216914 [ 7] 1, 1, 2, 6, 6, 30, 30, 30, 30, 30, 30 %e A216914 [ 8] 1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105 %e A216914 [ 9] 1, 1, 2, 2, 2, 10, 10, 70, 70, 70, 70 %e A216914 [10] 1, 1, 1, 3, 3, 3, 3, 21, 21, 21, 21 %e A216914 [11] 1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210 %e A216914 [12] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 %e A216914 [13] 1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210 %t A216914 (* k stands for N *) T[n_, k_] := Product[If[GCD[j, n] == 1 && PrimeQ[j], j, 1], {j, 1, k}]; %t A216914 Table[T[n - k, k], {n, 1, 12}, {k, n - 1, 0, -1}] // Flatten (* _Jean-François Alcover_, Aug 02 2019 *) %o A216914 (Sage) %o A216914 def Gauss_primorial(N, n): %o A216914 return mul(j for j in (1..N) if gcd(j, n) == 1 and is_prime(j)) %o A216914 for n in (1..13): [Gauss_primorial(N,n) for N in (1..10)] %Y A216914 Cf. A034386(n) = n# = Gauss_primorial(n, 1). %Y A216914 The compressed version of the primorial eliminates all duplicates. %Y A216914 Cf. A002110(n) = compressed(Gauss_primorial(n, 1)). %Y A216914 Cf. A070826(n) = compressed(Gauss_primorial(n, 2)). %Y A216914 Cf. A007947(n) = Gauss_primorial(1*n, 1)/Gauss_primorial(1*n, 1*n). %Y A216914 Cf. A204455(n) = Gauss_primorial(2*n, 2)/Gauss_primorial(2*n, 2*n). %Y A216914 Cf. A216913(n) = Gauss_primorial(3*n, 3)/Gauss_primorial(3*n, 3*n). %K A216914 nonn,tabl %O A216914 1,4 %A A216914 _Peter Luschny_, Oct 02 2012