cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216915 T(n, k) = Product{1<=j<=n, gcd(j,k)=1 | j} / lcm{1<=j<=n, gcd(j,k)=1 | j} for n >= 0, k >= 1, square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 1, 48, 1, 2, 1, 2, 1, 1, 1, 1, 144, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1, 17280, 3, 80
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

T(n,k) = Product(R(n,k))/lcm(R(n,k)) where R(n,k) is the set of all integers up to n that are relatively prime to k.
T(n,k) = A216919(n,k)/A216917(n,k).

Examples

			   k |n=0  1  2  3  4  5  6  7  8   9   10
  ---+------------------------------------
   1 |  1  1  1  1  2  2 12 12 48 144 1440
   2 |  1  1  1  1  1  1  1  1  1   3    3
   3 |  1  1  1  1  2  2  2  2  8   8   80
   4 |  1  1  1  1  1  1  1  1  1   3    3
   5 |  1  1  1  1  2  2 12 12 48 144  144
   6 |  1  1  1  1  1  1  1  1  1   1    1
   7 |  1  1  1  1  2  2 12 12 48 144 1440
   8 |  1  1  1  1  1  1  1  1  1   3    3
   9 |  1  1  1  1  2  2  2  2  8   8   80
  10 |  1  1  1  1  1  1  1  1  1   3    3
  11 |  1  1  1  1  2  2 12 12 48 144 1440
  12 |  1  1  1  1  1  1  1  1  1   1    1
  13 |  1  1  1  1  2  2 12 12 48 144 1440
		

Programs

  • Sage
    def A216915(n, k):
        def R(n, k): return [j for j in (1..n) if gcd(j, k) == 1]
        return mul(R(n,k))/lcm(R(n, k))
    for k in (1..13): [A216915(n, k) for n in (0..10)]

Formula

For n > 0:
A(n,1) = A025527(n);
A(4,n) = A000034(n);
A(n,n) = A128247(n).