This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216917 #20 Mar 04 2018 17:47:27 %S A216917 1,1,1,2,1,1,6,1,1,1,12,3,2,1,1,60,3,2,1,1,1,60,15,4,3,2,1,1,420,15, %T A216917 20,3,6,1,1,1,840,105,20,15,12,1,2,1,1,2520,105,140,15,12,1,6,1,1,1, %U A216917 2520,315,280,105,12,5,12,3,2,1,1,27720,315,280,105,84 %N A216917 Square array read by antidiagonals, T(N,n) = lcm{1<=j<=N, gcd(j,n)=1 | j} for N >= 0, n >= 1. %C A216917 T(N,n) is the least common multiple of all integers up to N that are relatively prime to n. %C A216917 Replacing LCM in the definition with "product" gives the Gauss factorial A216919. %F A216917 For n > 0: %F A216917 A(n,1) = A003418(n); %F A216917 A(n,2^k) = A217858(n) for k > 0; %F A216917 A(n,3^k) = A128501(n-1) for k > 0; %F A216917 A(2,n) = A000034(n); %F A216917 A(3,n) = A129203(n-1); %F A216917 A(4,n) = A129197(n-1); %F A216917 A(n,n) = A038610(n); %F A216917 A(floor(n/2),n) = A124443(n); %F A216917 A(n,1)/A(n,n) = A064446(n); %F A216917 A(n,1)/A(n,2) = A053644(n). %e A216917 n | N=0 1 2 3 4 5 6 7 8 9 10 %e A216917 -----+------------------------------------- %e A216917 1 | 1 1 2 6 12 60 60 420 840 2520 2520 %e A216917 2 | 1 1 1 3 3 15 15 105 105 315 315 %e A216917 3 | 1 1 2 2 4 20 20 140 280 280 280 %e A216917 4 | 1 1 1 3 3 15 15 105 105 315 315 %e A216917 5 | 1 1 2 6 12 12 12 84 168 504 504 %e A216917 6 | 1 1 1 1 1 5 5 35 35 35 35 %e A216917 7 | 1 1 2 6 12 60 60 60 120 360 360 %e A216917 8 | 1 1 1 3 3 15 15 105 105 315 315 %e A216917 9 | 1 1 2 2 4 20 20 140 280 280 280 %e A216917 10 | 1 1 1 3 3 3 3 21 21 63 63 %e A216917 11 | 1 1 2 6 12 60 60 420 840 2520 2520 %e A216917 12 | 1 1 1 1 1 5 5 35 35 35 35 %e A216917 13 | 1 1 2 6 12 60 60 420 840 2520 2520 %t A216917 t[_, 0] = 1; t[n_, k_] := LCM @@ Select[Range[k], CoprimeQ[#, n]&]; Table[t[n - k + 1, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* _Jean-François Alcover_, Jul 29 2013 *) %o A216917 (Sage) %o A216917 def A216917(N, n): %o A216917 return lcm([j for j in (1..N) if gcd(j, n) == 1]) %o A216917 for n in (1..13): [A216917(N,n) for N in (0..10)] %K A216917 nonn,tabl %O A216917 1,4 %A A216917 _Peter Luschny_, Oct 02 2012