This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216918 #23 Apr 05 2020 05:03:06 %S A216918 105,165,195,231,255,273,285,315,345,357,385,399,429,435,455,465,483, %T A216918 495,525,555,561,585,595,609,615,627,645,651,663,665,693,705,715,735, %U A216918 741,759,765,777,795,805,819,825,855,861,885,897,903,915,935,945,957,969 %N A216918 Odd numbers with at least 3 distinct prime factors. %C A216918 If "at least" is changed to "exactly" we get A278569. - _N. J. A. Sloane_, Nov 27 2016 %H A216918 Alois P. Heinz, <a href="/A216918/b216918.txt">Table of n, a(n) for n = 1..10000</a> %H A216918 J. B. Cosgrave, K. Dilcher, <a href="http://www.emis.de/journals/INTEGERS/papers/i39/i39.Abstract.html"> Extensions of the Gauss-Wilson Theorem</a>, Integers: Electronic Journal of Combinatorial Number Theory, 8 (2008), p.11. %F A216918 Gauss_factorial(floor(a(n)/2), a(n)) == 1 (mod a(n)). (Cf. A216919) %p A216918 a:= proc(n) option remember; local k; %p A216918 for k from 2+ `if`(n=1, 103, a(n-1)) by 2 %p A216918 while nops(numtheory[factorset](k))<=2 do od; k %p A216918 end: %p A216918 seq (a(n), n=1..100); # _Alois P. Heinz_, Oct 03 2012 %t A216918 Select[Range[1, 999, 2], (PrimeNu[#] >= 3)&] (* _Jean-François Alcover_, Feb 27 2014 *) %o A216918 (Sage) %o A216918 def is_A216918(n): %o A216918 if n % 2 == 0: return False %o A216918 return len(n.prime_divisors()) >= 3 %o A216918 def A216918_list(n): return [k for k in srange(1, n + 1, 2) if is_A216918(k)] %o A216918 A216918_list(969) %Y A216918 A278569 is a subsequence. %K A216918 nonn %O A216918 1,1 %A A216918 _Peter Luschny_, Oct 02 2012