A216920 m such that the integer part of sigma(m)/phi(m) is not attained by any integer less than m.
1, 2, 3, 6, 10, 12, 20, 30, 42, 60, 120, 210, 420, 630, 840, 2520, 9240, 10080, 27720, 55440, 120120, 360360, 720720, 2162160, 6126120, 12252240, 36756720, 116396280, 232792560, 698377680, 2677114440, 5354228880, 26771144400, 155272637520, 465817912560
Offset: 1
Keywords
Examples
a(22) = 360360 is in this list because sigma(360360)/phi(360360) = 22.75 and floor(sigma(k)/phi(k)) != 22 for all k < 360360.
Crossrefs
Cf. A185339.
Programs
-
Maple
A216920_list := proc(searchlimit) local p, q, P, R; with(numtheory): P := {}; R := NULL; p := 1; while p < searchlimit do q := iquo(sigma(p), phi(p)); if not member(q, P) then P := {q} union P; R := R,p fi; p := p+1 od: R end: A216920_list(1000);
-
Sage
def A216920_list(searchlimit): P = {} for p in (1..searchlimit): q = sigma(p)//euler_phi(p) if q not in P: P[q] = p return sorted(P.values()) A216920_list(1000)
Extensions
a(31)-a(33) from Donovan Johnson, Oct 02 2012
a(34)-a(35) from Donovan Johnson, Oct 03 2012
Comments