This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216953 #21 Nov 26 2017 09:49:59 %S A216953 2,2,2,2,0,6,2,2,0,12,2,0,0,0,30,2,2,6,0,0,54,2,0,0,0,0,0,126,2,2,0, %T A216953 12,0,0,0,240,2,0,6,0,0,0,0,0,504,2,2,0,0,30,0,0,0,0,990,2,0,0,0,0,0, %U A216953 0,0,0,0,2046,2,2,6,12,0,54,0,0,0,0,0,4020,2,0,0,0,0,0,0,0,0,0,0,0,8190,2,2,0,0,0,0,126,0,0,0,0,0,0,16254 %N A216953 Triangle read by rows: T(n,k) (n>=1, 1<=k<=n) = number of binary sequences of length n with minimal period k. %D A216953 For references see A027375. %H A216953 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102 [math.CO], Dec 25 2012. %H A216953 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3. %F A216953 If k divides n, T(n,k) = A027375(k), otherwise 0. %e A216953 Triangle begins: %e A216953 2, %e A216953 2, 2, %e A216953 2, 0, 6, %e A216953 2, 2, 0, 12, %e A216953 2, 0, 0, 0, 30, %e A216953 2, 2, 6, 0, 0, 54, %e A216953 2, 0, 0, 0, 0, 0, 126, %e A216953 2, 2, 0, 12, 0, 0, 0, 240, %e A216953 2, 0, 6, 0, 0, 0, 0, 0, 504, %e A216953 2, 2, 0, 0, 30, 0, 0, 0, 0, 990, %e A216953 ... %e A216953 For n=4 the 16 sequences are: %e A216953 0000, 1111, period 1, %e A216953 0101, 1010, period 2, %e A216953 and the rest have period 4. %p A216953 with(numtheory): A027375:=n->add( mobius(d)*2^(n/d), d in divisors(n)); %p A216953 a:=proc(n,k) global A027375; %p A216953 if n mod k = 0 then A027375(k) else 0; fi; end; %t A216953 a027375[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&]; %t A216953 T[n_, k_] := If[Divisible[n, k], a027375[k], 0]; %t A216953 Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Nov 26 2017 *) %Y A216953 Cf. A027375 (the main diagonal), A216954, A001037. %K A216953 nonn,tabl %O A216953 1,1 %A A216953 _N. J. A. Sloane_, Sep 25 2012