A216954 Triangle read by rows: A216953/2.
1, 1, 1, 1, 0, 3, 1, 1, 0, 6, 1, 0, 0, 0, 15, 1, 1, 3, 0, 0, 27, 1, 0, 0, 0, 0, 0, 63, 1, 1, 0, 6, 0, 0, 0, 120, 1, 0, 3, 0, 0, 0, 0, 0, 252, 1, 1, 0, 0, 15, 0, 0, 0, 0, 495, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1023, 1, 1, 3, 6, 0, 27, 0, 0, 0, 0, 0, 2010, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4095, 1, 1, 0, 0, 0, 0, 63, 0, 0, 0, 0, 0, 0, 8127
Offset: 1
Examples
Triangle begins: 1; 1, 1; 1, 0, 3; 1, 1, 0, 6; 1, 0, 0, 0, 15; 1, 1, 3, 0, 0, 27; 1, 0, 0, 0, 0, 0, 63; 1, 1, 0, 6, 0, 0, 0, 120; 1, 0, 3, 0, 0, 0, 0, 0, 252; 1, 1, 0, 0, 15, 0, 0, 0, 0, 495; ...
Links
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], 2012-2013.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
Programs
-
Mathematica
a027375[n_] := DivisorSum[n, MoebiusMu[n/#] 2^# &]; T[n_, k_] := If[Divisible[n, k], a027375[k]/2, 0]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 06 2018 *)