This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A216962 #16 Sep 25 2018 08:00:13 %S A216962 1,2,5,1,15,9,52,63,5,203,416,101,877,2741,1361,61,4140,18425,15602, %T A216962 2153,21147,127603,165786,46959,1385,115975,914508,1700220,823256, %U A216962 74841,678570,6794508,17200589,12802659,2389953,50521,4213597,52354116,173871641,185499899,59207070,3855277 %N A216962 Triangle read by rows, arising in enumeration of permutations by cyclic peaks. %C A216962 See Ma and Chow (2012) for precise definition (see corollary 2). %H A216962 Shi-Mei Ma and Chak-On Chow, <a href="http://arxiv.org/abs/1203.6264">Enumeration of permutations by number of cyclic peaks and cyclic valleys</a>, arXiv preprint arXiv:1203.6264, 2012 %e A216962 Triangle begins: %e A216962 1 %e A216962 2 %e A216962 5,1 %e A216962 15,9 %e A216962 52,63,5 %e A216962 203,416,101 %e A216962 877,2741,1361,61 %e A216962 ... %t A216962 P[1] := x y; P[n_] := P[n] = ((n-1)q + x y) P[n-1] + 2q(1-q) D[P[n-1], q] + x(1-q) D[P[n-1], x] + (1-y) D[P[n-1], y] // Simplify; %t A216962 row[n_] := CoefficientList[P[n] /. {x -> 1, y -> 1}, q]; %t A216962 Array[row, 12] // Flatten (* _Jean-François Alcover_, Sep 25 2018 *) %o A216962 (PARI) tabf(m) = {P = x; for (n=1, m, M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = (n*q+x)*P + 2*q*(1-q)*deriv(P, q)+ x*(1-q)*deriv(P,x););} \\ _Michel Marcus_, Feb 08 2013 %Y A216962 First column is A000110. %K A216962 nonn,tabf %O A216962 1,2 %A A216962 _N. J. A. Sloane_, Sep 27 2012 %E A216962 More terms from _Michel Marcus_, Feb 08 2013