cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A216963 Triangle read by rows, arising in enumeration of permutations by cyclic peaks, cycles and fixed points.

This page as a plain text file.
%I A216963 #31 Nov 08 2017 10:29:09
%S A216963 1,0,1,1,1,4,5,11,28,5,41,153,71,162,872,759,61,715,5191,7262,1665,
%T A216963 3425,32398,66510,29778,1385,17722,211937,601080,443231,60991,98253,
%U A216963 1451599,5446847,5994473,1642877,50521,580317,10393114,49940615,76889330,35162440,3249025
%N A216963 Triangle read by rows, arising in enumeration of permutations by cyclic peaks, cycles and fixed points.
%C A216963 See Ma and Chow (2012) for precise definition (cf. Proposition 3).
%H A216963 Alois P. Heinz, <a href="/A216963/b216963.txt">Rows n = 0..200, flattened</a>
%H A216963 Shi-Mei Ma and Chak-On Chow, <a href="https://arxiv.org/abs/1203.6264">Enumeration of permutations by number of cyclic peaks and cyclic valleys</a>, arXiv preprint arXiv:1203.6264 [math.CO], 2012.
%e A216963 Triangle begins:
%e A216963 :   1;
%e A216963 :   0;
%e A216963 :   1;
%e A216963 :   1,    1;
%e A216963 :   4,    5;
%e A216963 :  11,   28,    5;
%e A216963 :  41,  153,   71;
%e A216963 : 162,  872,  759,   61;
%e A216963 : 715, 5191, 7262, 1665;
%e A216963 ...
%p A216963 p:= proc(n) option remember; expand(`if`(n<4,
%p A216963       [1, 0, x, x*(1+q)][n+1], (n-1)*q*p(n-1)+
%p A216963       2*q*(1-q)*diff(p(n-1), q)+x*(1-q)*
%p A216963       diff(p(n-1), x)+(n-1)*x*p(n-2)))
%p A216963     end:
%p A216963 T:= n-> (t-> seq(coeff(t, q, i), i=0..
%p A216963          max(0, degree(t))))(subs(x=1, p(n))):
%p A216963 seq(T(n), n=0..15);  # _Alois P. Heinz_, Apr 13 2017
%t A216963 p[0] = 1; p[1] = 0; p[2] = x; p[3] = (1 + q) x;
%t A216963 p[n_] := p[n] = Expand[(n - 1) q p[n - 1] + 2 q (1 - q) D[p[n - 1], q] + x (1 - q) D[p[n - 1], x] + (n - 1) x p[n - 2]];
%t A216963 T[n_] := CoefficientList[p[n] /. x -> 1 , q]; T[1] = {0};
%t A216963 Table[T[n], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, Nov 08 2017 *)
%o A216963 (PARI) tabf(m) = {P = x; M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); Q = (1+q)*x; M = subst(Q, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); for (n=3, m, newP = n*q*Q + 2*q*(1-q)*deriv(Q,q) + x*(1-q)*deriv(Q,x) + n*x*P; M = subst(newP, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = Q; Q = newP;);} \\ _Michel Marcus_, Feb 09 2013
%Y A216963 Column k=0 gives A000296.
%Y A216963 Row sums give A000166.
%Y A216963 T(2n+1,n) gives A000364(n) for n>0.
%K A216963 nonn,tabf
%O A216963 0,6
%A A216963 _N. J. A. Sloane_, Sep 27 2012
%E A216963 More terms from _Michel Marcus_, Feb 09 2013
%E A216963 One row for T(0,0)=1 prepended by _Alois P. Heinz_, Apr 13 2017