A216993 Triangle read by rows in which row n gives the lexicographically earliest denominators with the least possible maximum value among all n-term Egyptian fractions with unit sum.
1, 0, 0, 2, 3, 6, 2, 4, 6, 12, 2, 4, 10, 12, 15, 3, 4, 6, 10, 12, 15, 3, 4, 9, 10, 12, 15, 18, 3, 5, 9, 10, 12, 15, 18, 20, 4, 5, 8, 9, 10, 15, 18, 20, 24, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 5, 6, 8, 9, 10, 15, 18, 20, 21, 24, 28, 4, 8, 9, 10, 12, 15, 18, 20, 21, 24, 28, 30, 4, 8, 9, 11, 12, 18, 20, 21, 22, 24, 28, 30, 33
Offset: 1
Examples
Row 5 = [2,4,10,12,15]: lexicographically earliest denominators with the least possible maximum value (15) among 72 possible 5-term Egyptian fractions equal to 1. 1 = 1/2 + 1/4 + 1/10 + 1/12 + 1/15. Triangle begins: 1; 0, 0; 2, 3, 6; 2, 4, 6, 12; 2, 4, 10, 12, 15; 3, 4, 6, 10, 12, 15;
Links
- Robert Price, Rows n = 1..24, flattened
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Problem 958, College Mathematics Journal, Vol. 42, No. 4, September 2011, p. 330.
- Mohammad K. Azarian, Sylvester's Sequence and the Infinite Egyptian Fraction Decomposition of 1, Solution College Mathematics Journal, Vol. 43, No. 4, September 2012, pp. 340-342.
- Harry Ruderman and Paul Erdős, Problem E2427: Bounds for Egyptian fraction partitions of unity (comments), Amer. Math. Monthly, 1974 (Vol. 81), pp. 780-782.
- Eric Weisstein's World of Mathematics, Egyptian Fraction
- Wikipedia, Egyptian fraction
- Index entries for sequences related to Egyptian fractions
Comments