This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217001 #20 Mar 24 2020 06:38:27 %S A217001 2,6,9,14,22,25,30,33,41,46,49,54,57,62,86,89,97,113,118,121,126,134, %T A217001 142,161,177,198,201,209,214,217,222,225,238,254,265,273,278,286,294, %U A217001 302,305,310,313,321,329,337,342,350,366,393,414,417,425,441,449,470 %N A217001 Numbers k such that (k^2 + k + 2)/4 is prime. %C A217001 (A000217(a(n))+1)/2 is prime. %H A217001 Daniel Starodubtsev, <a href="/A217001/b217001.txt">Table of n, a(n) for n = 1..10000</a> %e A217001 For k=2, (k^2 + k + 2)/4 = 2 is prime. Then 2 is in the sequence. %e A217001 For k=6, (k^2 + k + 2)/4 = 11 is prime. Then 6 is in the sequence. %e A217001 For k=5, (k^2 + k + 2)/4 = 8 is not prime. Then 5 is not in the sequence. %p A217001 tn := unapply(n*(n+1)/2,n): %p A217001 f := unapply((t+1)/2,t): %p A217001 T := []: N := []: P := []: %p A217001 for k from 0 to 5000 do %p A217001 t:=tn(k): %p A217001 p := f(k): %p A217001 if p = floor(p) then %p A217001 p = floor(p): %p A217001 if isprime(p) then %p A217001 T := [op(T), t]: %p A217001 N := [op(N), k]: %p A217001 P := [op(P), p]: %p A217001 end if: %p A217001 end if: %p A217001 if nops(T) = 50 then %p A217001 break: %p A217001 end if: %p A217001 end do: %p A217001 N := N; %t A217001 Select[Range[500], PrimeQ[(#^2 + # + 2)/4] &] (* _T. D. Noe_, Sep 24 2012 *) %o A217001 (PARI) is(n)=isprime((n^2+n+2)/4) \\ _Charles R Greathouse IV_, Jun 13 2017 %Y A217001 Cf. A000040. %K A217001 nonn,easy %O A217001 1,1 %A A217001 _César Eliud Lozada_, Sep 22 2012