This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217029 #24 Dec 12 2015 13:11:21 %S A217029 1,2,2,3,1,3,4,3,3,4,5,2,1,2,5,6,5,4,4,5,6,7,3,5,1,5,3,7,8,7,2,5,5,2, %T A217029 7,8,9,4,7,3,1,3,7,4,9,10,9,8,7,6,6,7,8,9,10,11,5,3,2,7,1,7,2,3,5,11, %U A217029 12,11,10,9,8,7,7,8,9,10,11,12,13,6,11,5,9 %N A217029 Array T(i,j) read by antidiagonals, where T(i,j) is the height of i/j, that is max(|m|,|n|) with m/n = i/j and gcd(m, n) = 1. %H A217029 T. D. Noe, <a href="/A217029/b217029.txt">First 100 antidiagonals, flattened</a> %H A217029 J. H. Silverman and J. H. Tate, <a href="http://dx.doi.org/10.1007/978-1-4757-4252-7">Rational Points on Elliptic Curves</a>, Springer 1992, p. 63. %e A217029 1, 2, 3, 4, 5, 6, ... %e A217029 2, 1, 3, 2, 5, 3, ... %e A217029 3, 3, 1, 4, 5, 2, ... %e A217029 ... %t A217029 t[i_, j_] := Max[ Abs[ Numerator[r = i/j]], Denominator[r]]; Table[ t[i-j+1, j], {i, 1, 14}, {j, 1, i}] // Flatten %o A217029 (PARI) T(i,j)=max(i/gcd(i,j),j/gcd(i,j)) \\ _Charles R Greathouse IV_, Sep 25 2012 %Y A217029 Cf. A002246. %K A217029 nonn,nice,tabl %O A217029 1,2 %A A217029 _Jean-François Alcover_, Sep 24 2012