cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217035 Generalized cuban primes (A007645) which are also Class 1- (or Pierpont) primes (A005109).

This page as a plain text file.
%I A217035 #19 Sep 17 2019 10:21:26
%S A217035 3,7,13,19,37,73,97,109,163,193,433,487,577,769,1153,1297,1459,2593,
%T A217035 2917,3457,3889,10369,12289,17497,18433,39367,52489,139969,147457,
%U A217035 209953,331777,472393,629857,746497,786433,839809,995329,1179649,1492993,1769473
%N A217035 Generalized cuban primes (A007645) which are also Class 1- (or Pierpont) primes (A005109).
%C A217035 Is this the union of A058383 and {3}? - _R. J. Mathar_, Sep 28 2012
%C A217035 Yes, it is, because the only Fermat prime == 0 or 1 mod 3 is 3. - _Robert Israel_, Mar 02 2018
%C A217035 Generalized cuban primes are primes of the form x^2 + xy + y^2; or: primes of form x^2 + 3*y^2; or: primes == 0 or 1 mod 3. Class 1- (or Pierpont) primes: primes of the form 2^t*3^u + 1.
%H A217035 Ray Chandler, <a href="/A217035/b217035.txt">Table of n, a(n) for n = 1..8379</a> (terms < 10^1000)
%F A217035 A007645 INTERSECTION A005109.
%t A217035 nn = 100000; t1 = Join[{3}, Select[Prime[Range[nn]], MemberQ[{1}, Mod[#, 3]] &]]; t2 = Select[Prime[Range[nn]], Max @@ First /@ FactorInteger[# - 1] < 5 &]; Intersection[t1, t2] (* _T. D. Noe_, Sep 26 2012 *)
%Y A217035 Cf. A007645, A005109, A058383.
%K A217035 nonn,easy
%O A217035 1,1
%A A217035 _Jonathan Vos Post_, Sep 24 2012