cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217036 Term preceding the first zero in the Fibonacci numbers modulo n.

This page as a plain text file.
%I A217036 #32 Aug 16 2025 21:21:29
%S A217036 1,2,1,3,5,6,5,8,7,1,5,8,13,11,9,4,17,1,9,13,1,22,17,18,5,26,13,1,11,
%T A217036 1,17,23,21,6,17,31,1,14,29,40,13,42,1,26,45,46,41,48,7,35,25,23,53,
%U A217036 34,41,20,1,1,41,11,1,55,33,47,23,66,33,22,41,1,17,27
%N A217036 Term preceding the first zero in the Fibonacci numbers modulo n.
%C A217036 The multiplicative order of term n modulo n is given by sequence A001176.
%C A217036 Let M = [{1, 1}, {1, 0}], I = [{1, 0}, {0, 1}] is the 2 X 2 identity matrix, then A001177(n) is the smallest k > 0 such that M^k == r*I (mod n) for some r such that 0 <= r < n, and a(n) gives the value r. - _Jianing Song_, Jul 04 2019
%H A217036 Charles R Greathouse IV, <a href="/A217036/b217036.txt">Table of n, a(n) for n = 2..10000</a>
%F A217036 a(n) = F(G(n)-1) mod n where G(n) is sequence A001177 and F(m) is the m-th Fibonacci number. In particular, if n is a Fibonacci number, the n-th term is the previous Fibonacci number.
%F A217036 From _Jianing Song_, Jul 04 2019: (Start)
%F A217036 Also a(n) = F(G(n)+1) mod n.
%F A217036 a(2^e) = 1 if e = 1, 2, 2^(e-1) + 1 if e >= 3; a(p^e) = a(p)^(p^(e-1)) mod p^e for odd primes p.
%F A217036 For odd primes p, a(p^e) = 1 if and only if A001177(p) == 2 (mod 4); a(p^e) = p^e - 1 if and only if 4 divides A001177(p). (End)
%p A217036 a:= proc(n) local f, g; f, g:= 1, 0;
%p A217036       while f<>0 do f, g:= irem(f+g, n), f od; g
%p A217036     end:
%p A217036 seq(a(n), n=2..100);  # _Alois P. Heinz_, Sep 24 2012
%t A217036 Table[k = 1; While[Mod[Fibonacci[k], n] > 0, k++]; Mod[Fibonacci[k - 1], n], {n, 2, 100}] (* _T. D. Noe_, Sep 24 2012 *)
%o A217036 (PARI) a(n)=my(a=0,b=1);for(k=1,n^2,[a,b]=[b,(a+b)%n];if(!b,return(a))) \\ _Charles R Greathouse IV_, Sep 24 2012
%K A217036 nonn
%O A217036 2,2
%A A217036 _David Spies_, Sep 24 2012
%E A217036 a(14)-a(70) from _Charles R Greathouse IV_, Sep 24 2012