A217038 Number of powerful numbers < n.
0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12
Offset: 1
Keywords
Examples
a(10)=4 since there are exactly 4 powerful numbers (1,4,8,9) less than 10.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Paul Erdős and George Szekeres, Über die Anzahl der Abelschen Gruppen gegebener Ordnung und über ein verwandtes zahlentheoretisches Problem, Acta Sci. Math. (Szeged), Vol. 7, No. 2 (1935), pp. 95-102.
- Solomon W. Golomb, Powerful numbers, Amer. Math. Monthly, Vol. 77, No. 8 (1970), pp. 848-852.
Programs
-
Mathematica
PowQ[n_] := Cases[FactorInteger[n], {p_, 1} -> p] == {}; Q[n_] := Length[Join[{1}, Select[Range[n - 1], PowQ[#] &]]] ; Join[{0}, Table[Q[n], {n, 2, 100}]]
-
PARI
g(n,fe=factor(n)[,2])=prod(i=1,#fe, (fe[i]+2)\2 - (fe[i]+2)\3) a(n)=my(v=List(),t); n--; for(m=2,sqrtnint(n,6), for(y=1,sqrtnint(n\m^6,3), t=(m^2*y)^3; for(x=1,sqrtint(n\t), listput(v,t*x^2)))); v=Set(v); sum(y=1,sqrtnint(n,3), sqrtint(n\y^3))-sum(i=1,#v, g(v[i])-1) \\ Charles R Greathouse IV, Jul 31 2017
-
PARI
first(n)=my(v=vector(n),s=1); if(n>1, v[2]=1); forfactored(k=2,n-1, if(vecmin(k[2][,2])>1, s++); v[k[1]+1]=s); v \\ Charles R Greathouse IV, Jul 31 2017
-
PARI
a(n)=my(s); n--; forsquarefree(k=1,sqrtnint(n,3), s+=sqrtint(n\k[1]^3)); s \\ Charles R Greathouse IV, Dec 12 2022
-
Python
from math import isqrt from sympy import mobius, integer_nthroot def A217038(n): def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) c, l = 0, 0 j = isqrt(n-1) while j>1: k2 = integer_nthroot((n-1)//j**2,3)[0]+1 w = squarefreepi(k2-1) c += j*(w-l) l, j = w, isqrt((n-1)//k2**3) c += squarefreepi(integer_nthroot(n-1,3)[0])-l return c # Chai Wah Wu, Sep 12 2024
Formula
a(n) = (zeta(3/2)/zeta(3)) * sqrt(n) + O(n^(1/3)) (Erdős and Szekeres, 1935; Golomb, 1970). - Amiram Eldar, Apr 06 2023
Comments