This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217090 #23 May 22 2017 11:54:45 %S A217090 5,7,11,13,17,19,29,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103, %T A217090 107,109,113,127,131,139,149,151,157,163,167,173,179,181,193,197,199, %U A217090 211,223,227,229,233,241,251,257,263,269,271,281,283,293,307,311,313 %N A217090 Optimus primes. %C A217090 An odd prime p is an optimus prime if (1 + sqrt(Legendre(-1, p)*p))^p - 1 = a + b*sqrt(Legendre(-1, p)*p), where gcd(a, b) = p. %H A217090 Charles R Greathouse IV, <a href="/A217090/b217090.txt">Table of n, a(n) for n = 1..10000</a> %H A217090 Arkadii Slinko, <a href="http://www.math.auckland.ac.nz/~slinko/Research/survey5.pdf">Additive Representability of Finite Measurement Structures</a>, 2007, 26 pp. %H A217090 Arkadii Slinko, <a href="/A217090/a217090.pdf">Additive Representability of Finite Measurement Structures</a>, 2007, 26 pp. [Cached copy, permission requested] %o A217090 (PARI) is(p)=if(p<3 || !isprime(p), return(0)); my(t=(2*quadgen(kronecker(-1, p)*p))^p); gcd(imag(t), real(t)-1)==p \\ _Charles R Greathouse IV_, Sep 26 2012 %Y A217090 Cf. A138465 (non-Optimus primes). %K A217090 nonn %O A217090 1,1 %A A217090 _Arkadiusz Wesolowski_, Sep 26 2012