A217101 Minimal number such that the number of contiguous palindromic bit patterns in its binary representation is n, or 0, if there is no such number.
1, 2, 3, 4, 0, 7, 8, 18, 17, 15, 16, 42, 33, 68, 31, 32, 133, 65, 267, 130, 63, 64, 260, 129, 341, 258, 447, 127, 128, 682, 257, 1040, 514, 895, 1029, 255, 256, 1919, 513, 2056, 1026, 1791, 2053, 2052, 511, 512, 5376, 1025, 5461, 2050, 3583, 4101, 4100, 8203, 1023, 1024, 8200
Offset: 1
Examples
a(3) = 3, since 3=11_2 has 3 contiguous palindromic bit patterns, and this is the least such number. a(6) = 7. Since 7=111_2 has 6 contiguous palindromic bit patterns, and this is the least such number. a(8) = 18. Since 18=10010_2 has 8 contiguous palindromic bit patterns (1, 0, 0, 1, 0, 00, 010 and 1001), and this is the least such number. a(9) = 17. Since 17=10001_2 has 9 contiguous palindromic bit patterns (1, 0, 0, 0, 1, 00, 00, 000, and 10001), and this is the least such number.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..300
Formula
a(n) = min(k | A206925(k) = n), for n<>5.
A206925(a(n)) = n, n<>5.
a(n) <= A217100(n), equality holds for n = 1, 2, 3 and 5, only.
a(A000217(n)) = 2^n - 1.
a(A000217(n)+1) = 2^n.
a(A000217(n)+3) = 2^(n+1)+1, n>2.
a(A000217(n)+5) = 2^(n+2)+2, n>4.
a(A000217(n)+6) = 2^(n+3) - 2^n - 1, n>5.
a(A000217(n)+7) = 2^(n+3)+5, n>6.
a(A000217(n)+8) = 2^(n+3)+4, n>7.
a(A000217(n)+9) = 2^(n+4)+11, n>8.
a(A000217(n)+10) = 2^(n+4) - 2^n - 1, n>9.
a(A000217(n)+11) = 21*2^n, n>10.
a(A000217(n)+12) = 2^(n+4)+8, n>11.
a(A000217(n)+13) = 2^(n+5)+18, n>12.
Comments