A217102 Minimal number (in decimal representation) with n nonprime substrings in binary representation (substrings with leading zeros are considered to be nonprime).
1, 2, 7, 5, 4, 11, 10, 12, 8, 22, 21, 19, 17, 16, 60, 39, 37, 34, 36, 32, 83, 71, 74, 69, 67, 66, 64, 143, 139, 141, 135, 134, 131, 130, 128, 283, 271, 269, 263, 267, 262, 261, 257, 256, 541, 539, 527, 526, 523, 533, 519, 514, 516, 512, 1055, 1053, 1047, 1067
Offset: 1
Examples
a(1) = 1, since 1 = 1_2 is the least number with 1 nonprime substring in binary representation. a(2) = 2, since 2 = 10_2 is the least number with 2 nonprime substrings in binary representation (0 and 1). a(3) = 7, since 7 = 111_2 is the least number with 3 nonprime substrings in binary representation (3-times 1, the prime substrings are 2-times 11 and 111). a(10) = 22, since 22 = 10110_2 is the least number with 10 nonprime substrings in binary representation, these are 0, 0, 1, 1, 1, 01, 011, 110, 0110 and 10110 (remember, that substrings with leading zeros are considered to be nonprime).
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..2015
Crossrefs
Formula
a(n) >= 2^floor((sqrt(8*n-7)-1)/2) for n>=1, equality holds if n=1 or n+1 is a triangular number (cf. A000217).
a(n) >= 2^floor((sqrt(8*n+1)-1)/2) for n>1, equality holds if n+1 is a triangular number.
a(A000217(n)-1) = 2^(n-1), n>1.
a(A000217(n)-k) >= 2^(n-1) + k-1, 1<=k<=n, n>1.
a(A000217(n)-k) = 2^(n-1) + p, where p is the minimal number >= 0 such that 2^(n-1) + p, has k prime substrings in binary representation, 1<=k<=n, n>1.
Comments