A217104 Minimal number (in decimal representation) with n nonprime substrings in base-4 representation (substrings with leading zeros are considered to be nonprime).
2, 1, 5, 4, 19, 17, 16, 75, 67, 66, 64, 269, 263, 266, 257, 256, 1053, 1031, 1035, 1029, 1026, 1024, 4125, 4119, 4123, 4107, 4099, 4098, 4096, 16479, 16427, 16431, 16407, 16395, 16391, 16386, 16384, 65709, 65629, 65579, 65581, 65559, 65543, 65539, 65537, 65536
Offset: 0
Examples
a(0) = 2, since 2 = 2_4 is the least number with zero nonprime substrings in base-4 representation. a(1) = 1, since 1 = 1_4 is the least number with 1 nonprime substring in base-4 representation. a(2) = 5, since 5 = 11_4 is the least number with 2 nonprime substrings in base-4 representation (these are 2-times 1). a(3) = 4, since 4 = 10_4 is the least number with 3 nonprime substrings in base-4 representation (these are 0, 1 and 10). a(4) = 19, since 19 = 103_4 is the least number with 4 nonprime substrings in base-4 representation, these are 0, 1, 10, and 03 (remember, that substrings with leading zeros are considered to be nonprime). a(7) = 75, since 75 = 1023_4 is the least number with 7 nonprime substrings in base-4 representation, these are 0, 1, 10, 02, 023, 102 and 1023 (remember, that substrings with leading zeros are considered to be nonprime: 2_4 = 2, 3_4 = 3 and 23_4 = 11 are the only base-4 prime substrings of 75).
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..528
Crossrefs
Formula
a(n) >= 4^floor((sqrt(8*n-7)-1)/2) for n>0, equality holds if n is a triangular number (cf. A000217).
a(A000217(n)) = 4^(n-1), n>0.
a(A000217(n)-k) >= 4^(n-1) + k, 0<=k0.
a(A000217(n)-k) = 4^(n-1) + p, where p is the minimal number >= 0 such that 4^(n-1) + p, has k prime substrings in base-4 representation, 0<=k0.
Comments