A217117 Greatest number (in decimal representation) with n nonprime substrings in base-7 representation (substrings with leading zeros are considered to be nonprime).
37, 331, 317, 2322, 2389, 15259, 16260, 16728, 100291, 113825, 116101, 117109, 796777, 796781, 819719, 823003, 4753901, 5577444, 5738035, 5738039, 5761027, 31150219, 39041113, 39336580, 40166250, 40326841, 40336249, 218051538, 273271861
Offset: 0
Examples
a(0) = 37, since 37 = 52_7 (base-7) is the greatest number with zero nonprime substrings in base-7 representation. a(1) = 331 = 652_7 has 1 nonprime substring in base-7 representation (= 6). All the other base-7 substrings (2, 5, 52_7=37, 65_7=47 and 652_7=331) are prime substrings. 331 is the greatest number with 1 nonprime substring. a(2) = 317 = 632_7 has 6 substrings in base-7 representation (2, 3, 6, 32, 63 and 632), exactly 2 of them are nonprime substrings (6 and 32_6=20), and there is no greater number with 2 nonprime substrings in base-7 representation. a(8) = 100291 = 565252_3 has 8 nonprime substrings in base-7 representation, these are 6, 252_7, 525_7, 565_7, 5252_7, 5652_7, 6525_7 and 65252_7. There is no greater number with 8 nonprime substrings in base-7 representation.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..50
Crossrefs
Formula
a(n) >= A217107(n).
a(n) >= A217307(A000217(num_digits_7(a(n)))-n), where num_digits_7(x) is the number of digits of the base-7 representation of x.
a(n) <= 7^min(n+2, 5*floor((n+4)/5)).
a(n) <= 7^(n+2).
a(n) <= 7^min(3 + n/2, 8*floor((n+15)/16)).
a(n) <= 343*7^(n/2).
With m := floor(log_7(a(n))) + 1:
a(n+m+1) >= 7*a(n), if a(n)!=1 (mod 7).
a(n+m) >= 7*a(n), if a(n)=1 (mod 7).
Comments