A217110 Number of pandigital numbers with n places.
0, 0, 0, 0, 0, 0, 0, 0, 0, 3265920, 179625600, 5568393600, 128432304000, 2458427811840, 41355201888000, 632788296940800, 9008498667168000, 121205358007493760, 1558813928579107200, 19326359087766057600, 232491479092720848000, 2727512837264447527680, 31331281164921975283200, 353549170783043484480000
Offset: 1
Examples
a(k) = 0 for k < 10 since there are no pandigital numbers with < 10 places, trivially. a(10) = 9*9! since the first digit can be in the range 1..9 and for the following 9 digits there are 9, 8, 7, ..., 1 possible values.
Links
- Hieronymus Fischer, Table of n, a(n) for n = 1..200
Formula
a(n) = 9*9!*S2(n,10), where the S2(n,10) are the Stirling numbers of the second kind (cf. triangle A008277).
Asymptotic behavior: Limit_{n->oo} a(n)/10^n = 9/10.
G.f.: g(x) = 9*9!*x^10/(Product_{j=1..10} (1-jx)).
E.g.f. g(x) = (9/10) * (e^x - 1)^10.
Comments