This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217120 #48 Mar 06 2025 09:46:50 %S A217120 323,377,1159,1829,3827,5459,5777,9071,9179,10877,11419,11663,13919, %T A217120 14839,16109,16211,18407,18971,19043,22499,23407,24569,25199,25877, %U A217120 26069,27323,32759,34943,35207,39059,39203,39689,40309,44099,46979,47879 %N A217120 Lucas pseudoprimes. %C A217120 Lucas pseudoprimes with parameters (P, Q) defined by Selfridge's Method A. %H A217120 Amiram Eldar, <a href="/A217120/b217120.txt">Table of n, a(n) for n = 1..10000</a> (from Dana Jacobsen's site, terms 1..2998 from R. J. Mathar) %H A217120 Martin R. Albrecht, Jake Massimo, Kenneth G. Paterson, and Juraj Somorovsky, <a href="https://doi.org/10.1145/3243734.3243787">Prime and Prejudice: Primality Testing Under Adversarial Conditions</a>, Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, 281-298. %H A217120 Robert Baillie and Samuel S. Wagstaff, Jr., <a href="https://doi.org/10.1090/S0025-5718-1980-0583518-6">Lucas Pseudoprimes</a>, Mathematics of Computation, 35 (1980), 1391-1417. %H A217120 Robert Baillie, <a href="/A217120/a217120_1.txt">Mathematica program to generate terms</a> %H A217120 David Bernier, <a href="http://dx.doi.org/10.13140/RG.2.2.15759.09127">A strong primality test based on third-order linear recurrences</a>, ResearchGate (2025). See p. 6. %H A217120 Dana Jacobsen, <a href="http://ntheory.org/pseudoprimes.html">Pseudoprime Statistics, Tables, and Data</a> (includes terms through 10^14) %t A217120 (* see link *) %Y A217120 Cf. A005845 (Lucas pseudoprimes as defined by Bruckman). %Y A217120 Cf. A217255 (strong Lucas pseudoprimes as defined by Baillie and Wagstaff). %Y A217120 Cf. A217719 (extra strong Lucas pseudoprimes as defined by Baillie). %K A217120 nonn %O A217120 1,1 %A A217120 _Robert Baillie_, Mar 16 2013