This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217143 #19 Sep 08 2022 08:46:04 %S A217143 1,2,6,31,256,2960,44169,813298,17952898,465148507,13915349132, %T A217143 474372594032,18228772272441,782443669319410,37224994809379094, %U A217143 1949799331997896119,111783178753323665728,6978369826387194664144,472207139326449254997425 %N A217143 Sum of squares of Bell numbers (A000110). %F A217143 a(n) = Sum_{k=0..n} Bell(k)^2. %t A217143 Accumulate[BellB[Range[0, 20]]^2] (* _Bruno Berselli_, Sep 27 2012 *) %o A217143 (Maxima) makelist(sum(belln(k)^2,k,0,n),n,0,30); %o A217143 (Magma) [&+[Bell(i)^2: i in [0..n]]: n in [0..20]]; // _Bruno Berselli_, Sep 27 2012 %o A217143 (Python) %o A217143 from itertools import accumulate, islice %o A217143 def A217143_gen(): # generator of terms %o A217143 yield 1 %o A217143 blist, b, c = (1,), 1, 1 %o A217143 while True: %o A217143 blist = list(accumulate(blist, initial=(b:=blist[-1]))) %o A217143 yield (c := c+b**2) %o A217143 A217143_list = list(islice(A217143_gen(),20)) # _Chai Wah Wu_, Jun 22 2022 %Y A217143 Cf. A000110, A005001, A087650, A217144. %Y A217143 Partial sums of A001247. %K A217143 nonn %O A217143 0,2 %A A217143 _Emanuele Munarini_, Sep 27 2012