This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217145 #45 Jul 18 2020 09:01:27 %S A217145 1,1,9,313,30232,6874776,3355094696,3302015131304,6189229701416448, %T A217145 20757720442141804032,116803259505967824465408, %U A217145 1039413737809909553149398528,13914325979093456341597993070592,268988472559744572003351007811825664 %N A217145 exp( Sum_{n>=1} x^n/n^4 ) = Sum_{n>=0} a(n)*x^n/n!^4. %C A217145 Sum_{n>=0} a(n)/n!^4 = exp(Pi^4/90) = 2.951528682853355... %F A217145 a(0) = 1; a(n) = (n-1)! * (n!)^3 * Sum_{k=0..n-1} a(k) / ((k!)^4 * (n-k)^3). - _Ilya Gutkovskiy_, Jul 18 2020 %e A217145 A(x) = 1 + x + 9*x^2/2!^4 + 313*x^3/3!^4 + 30232*x^4/4!^4 + 6874776*x^5/5!^4 +... %e A217145 where %e A217145 log(A(x)) = x + x^2/2^4 + x^3/3^4 + x^4/4^4 + x^5/5^3 + x^6/6^4 +... %o A217145 (PARI) {a(n)=n!^4*polcoeff(exp(sum(m=1, n, x^m/m^4)+x*O(x^n)), n)} %o A217145 for(n=0,20,print1(a(n),", ")) %Y A217145 Cf. A074707, A193436. %K A217145 nonn %O A217145 0,3 %A A217145 _Paul D. Hanna_, Oct 18 2012