cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217194 Number of unlabeled simple graphs with n nodes of 2 colors whose components are path graphs.

This page as a plain text file.
%I A217194 #20 May 17 2018 16:26:43
%S A217194 1,2,6,16,42,106,267,656,1602,3868,9270,22048,52140,122580,286798,
%T A217194 667944,1549259,3579738,8242638,18917600,43286909,98768820,224768425,
%U A217194 510235760,1155553468,2611251662,5888421059,13252176464,29768501556,66749440076,149415504274
%N A217194 Number of unlabeled simple graphs with n nodes of 2 colors whose components are path graphs.
%C A217194 Here, a path graph is a connected graph with no cycles such that each node has degree at most two.
%H A217194 Alois P. Heinz, <a href="/A217194/b217194.txt">Table of n, a(n) for n = 0..1000</a>
%F A217194 G.f.: Product_{i>=1} 1/(1-x^i)^(2^(i-1)+2^(floor((i+1)/2)-1)).
%F A217194 EULER transform of A005418.
%e A217194 a(3) = 16 because we have:
%e A217194 w w w; w w b; w b b; b b b;
%e A217194 w w-w; w w-b; w b-b; b w-w; b w-b; b b-b;
%e A217194 w-w-w; w-w-b; w-b-w; b-w-b; b-b-w; b-b-b, where the 2 colors are black b and white w.
%p A217194 with(numtheory):
%p A217194 a:= proc(n) option remember; `if`(n=0, 1, add(add(d*(2^(d-1)+
%p A217194       2^(floor((d+1)/2)-1)), d=divisors(j))*a(n-j), j=1..n)/n)
%p A217194     end:
%p A217194 seq(a(n), n=0..30);  # _Alois P. Heinz_, Sep 27 2012
%t A217194 nn=30;p=Product[1/(1- x^i)^(2^(i-1)+2^(Floor[(i+1)/2]-1)),{i,1,nn}];CoefficientList[Series[p,{x,0,nn}],x]
%Y A217194 Cf.: A217093, A005380.
%K A217194 nonn
%O A217194 0,2
%A A217194 _Geoffrey Critzer_, Sep 27 2012