This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217199 #22 Mar 19 2021 06:59:25 %S A217199 3,7,19,31,79,97,139,199,211,229,271,307,331,337,367,379,439,499,547, %T A217199 577,601,607,619,691,727,811,829,937,967,1009,1069,1171,1279,1297, %U A217199 1399,1429,1459,1531,1609,1627,1759,1867,2011,2029,2089,2131,2179,2221,2281 %N A217199 Odd primes p such that 2p-1 is prime and no p is equal to 2q-1 with q in the sequence. %C A217199 At each step, the smallest possible p is chosen. %C A217199 These are the primes described in lemma 2 of the paper by Holt. - _T. D. Noe_, Sep 28 2012 %C A217199 This sequence was used by Holt (2003) to prove that there are at least two solutions k to phi(n+k) = phi(k) for all even n <= 1.38*10^26595411. - _Amiram Eldar_, Mar 19 2021 %H A217199 Michel Marcus, <a href="/A217199/b217199.txt">Table of n, a(n) for n = 1..1000</a> %H A217199 Jeffery J. Holt, <a href="http://dx.doi.org/10.1090/S0025-5718-03-01509-6">The minimal number of solutions to phi(n)=phi(n+k)</a>, Math. Comp., 72 (2003), 2059-2061. %H A217199 A. Schinzel and Andrzej Wakulicz, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa4/aa431.pdf">Sur l'équation phi(x+k)=phi(x), I.</a>, Acta Arith. 4 (1958), 181-184. %t A217199 t = {}; p = 2; Do[p = NextPrime[p]; If[PrimeQ[2*p - 1] && ! MemberQ[2*t - 1, p], AppendTo[t, p]], {PrimePi[2281]}]; t %o A217199 (PARI) intab(val, tab) = {for (ii=1, length(tab),if (tab[ii] == val, return (1);););return(0);} %o A217199 lista(nn) = {tab = []; for (i=1, nn, len = length(tab); if (len == 0, p = 3, p = nextprime(tab[len]+1)); while (! isprime(2*p-1) || intab((p+1)/2, tab) , p = nextprime(p+1);); tab = concat(tab, p); print1(p, ", "););} %Y A217199 Cf. A007015, A110581, A217198, A342701. %K A217199 nonn %O A217199 1,1 %A A217199 _Michel Marcus_, Sep 27 2012