This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217209 #29 Aug 02 2014 06:14:09 %S A217209 2,2,1,1,4,2,2,6,5,3,1,1,12,9,6,2,3,20,18,12,6,7,0,0,0,1,40,34,25,11, %T A217209 14,1,0,1,2,74,71,47,24,28,1,3,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A217209 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1 %N A217209 Irregular triangle read by rows: T(n,k) (n>=1, 1 <= k <= A217208(n)) = number of strings of n 2's and 3's having a tail of length k. %C A217209 See A217208 or A216730 for definition of tail. %H A217209 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102, Dec 25 2012. %H A217209 B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3. %H A217209 Ben Chaffin and N. J. A. Sloane, <a href="/A217209/a217209.txt">Rows 1 through 48</a> [The first 35 rows were computed by _N. J. A. Sloane_] %H A217209 <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a> %e A217209 Rows 1 through 8 are: %e A217209 2, %e A217209 2, 1, 1, %e A217209 4, 2, 2, %e A217209 6, 5, 3, 1, 1, %e A217209 12, 9, 6, 2, 3, %e A217209 20, 18, 12, 6, 7, 0, 0, 0, 1, %e A217209 40, 34, 25, 11, 14, 1, 0, 1, 2, %e A217209 74, 71, 47, 24, 28, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, %e A217209 148, 139, 95, 48, 56, 6, 4, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 1, %e A217209 ... %Y A217209 Cf. A217208 (row lengths), A216813 (means), A122536 (first column), A217210 (second column), A216730, A094004, A090822. %K A217209 nonn,tabf %O A217209 1,1 %A A217209 _N. J. A. Sloane_, Oct 01 2012