cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217216 Dimension of algebraic generators of the algebra "Baxter" of order n.

This page as a plain text file.
%I A217216 #30 Apr 27 2024 10:52:36
%S A217216 0,1,1,3,11,47,221,1113,5903,32607,186143,1092015,6555515,40137219,
%T A217216 249984481,1580468321,10125395007,65639436955,430048061915,
%U A217216 2844592155631,18979693010495,127641472658231,864645413540671,5896221199266519,40455246946190079
%N A217216 Dimension of algebraic generators of the algebra "Baxter" of order n.
%H A217216 G. Chatel and V. Pilaud, <a href="http://arxiv.org/abs/1411.3704">Cambrian Hopf Algebras</a>, arXiv:1411.3704 [math.CO], 2014-2015.
%H A217216 S. Giraudo, <a href="https://doi.org/10.46298/dmtcs.2919">Algebraic and combinatorial structures on Baxter permutations</a>, DMTCS proc. AO, FPSAC 2011 Rykjavik, (2011) 387-398
%H A217216 S. Giraudo, <a href="http://arxiv.org/abs/1204.4776">Algebraic and combinatorial structures on pairs of twin binary trees</a>, arXiv:1204.4776 [math.CO], 2012.
%H A217216 S. Giraudo, <a href="http://dx.doi.org/10.1016/j.jalgebra.2012.03.020">Algebraic and combinatorial structures on pairs of twin binary trees</a>, Journal of Algebra, Volume 360, 15 June 2012, Pages 115-157.
%F A217216 Giraudo gives a generating function.
%F A217216 a(n) ~ c * 8^n / n^4, where c = 4.21514033443045415032... - _Vaclav Kotesovec_, Apr 27 2024
%t A217216 nmax = 25;
%t A217216 1-1/(1+Sum[HypergeometricPFQ[{-1-n, 1-n, -n}, {2, 3}, -1] x^n, {n, nmax}]) + O[x]^nmax // CoefficientList[#, x]& (* _Jean-François Alcover_, Sep 26 2018 *)
%o A217216 (PARI)
%o A217216 baxter(n) = sum(k=1, n, binomial(n+1, k-1) * binomial(n+1, k) * binomial(n+1, k+1) / (binomial(n+1, 1) * binomial(n+1, 2)));
%o A217216 lista(m) = {u = t + t*O(t^m); b = 1 + sum(n=1, m, baxter(n)*u^n); gfbc = 1 - 1/b; for (n=0, m, print1(polcoeff(gfbc, n, t), ", "));}
%o A217216 \\ _Michel Marcus_, Feb 16 2013
%Y A217216 Cf. A001181.
%K A217216 nonn
%O A217216 0,4
%A A217216 _N. J. A. Sloane_, Oct 03 2012
%E A217216 More terms from _Michel Marcus_, Feb 16 2013