cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217220 Theta series of Kagome net with respect to an atom.

This page as a plain text file.
%I A217220 #21 Feb 16 2025 08:33:18
%S A217220 1,4,0,4,6,0,0,8,0,4,0,0,6,8,0,0,6,0,0,8,0,8,0,0,0,4,0,4,12,0,0,8,0,0,
%T A217220 0,0,6,8,0,8,0,0,0,8,0,0,0,0,6,12,0,0,12,0,0,0,0,8,0,0,0,8,0,8,6,0,0,
%U A217220 8,0,0,0,0,0,8,0,4,12,0,0,8,0,4,0,0,12,0,0,0,0,0,0,16,0,8,0,0,0,8,0,0,6,0,0
%N A217220 Theta series of Kagome net with respect to an atom.
%C A217220 Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%C A217220 Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%D A217220 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
%H A217220 Antti Karttunen, <a href="/A217220/b217220.txt">Table of n, a(n) for n = 0..65537</a>
%H A217220 N. J. A. Sloane, <a href="http://dx.doi.org/10.1063/1.527472">Theta series and magic numbers for diamond and certain ionic crystal structures</a>, J. Math. Phys. 28 (1987), pp. 1653-1657.
%H A217220 Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H A217220 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F A217220 Phi_0(q)-phi_1(q^4) in the notation of SPLAG, Chapter 4.
%F A217220 a(n) = 4 * b(n) where b() is multiplicative with b(2^e) = (1+(-1)^e)*3/4, b(3^e) = 1, b(p^e) = (1+(-1)^e)/2 if p == 5 (mod 6), b(p^e) = e+1 if p == 1 (mod 6). - _Michael Somos_, Feb 01 2017
%F A217220 Expansion of (2 * a(q) + a(q^4)) / 3 in powers of q where a() is a cubic AGM function. - _Michael Somos_, Feb 01 2017
%F A217220 Expansion of phi(q) * phi(q^3) + 2 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - _Michael Somos_, Feb 01 2017
%e A217220 G.f. = 1 + 4*q + 4*q^3 + 6*q^4 + 8*q^7 + 4*q^9 + 6*q^12 + 8*q^13 + ...
%p A217220 S:= series(JacobiTheta3(0,q)*JacobiTheta3(0,q^3)+JacobiTheta2(0,q)*JacobiTheta2(0,q^3)/2, q, 103):
%p A217220 seq(coeff(S,q,n),n=0..102); # _Robert Israel_, Nov 20 2017
%t A217220 a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^3] + 1/2 EllipticTheta[ 2, 0, q] EllipticTheta[ 2, 0, q^3], {q, 0, n}]; (* _Michael Somos_, Feb 01 2017 *)
%o A217220 (PARI) {a(n) = if( n<1, n==0, 4 * sumdiv( n, d, kronecker( d, 3)) + if( n%4==0, 2 * sumdiv( n/4, d, kronecker( d, 3))))}; /* _Michael Somos_, Feb 01 2017 */
%o A217220 (Magma) A := Basis( ModularForms( Gamma1(12), 1), 80); A[1] + 4*A[2] + 4*A[4] + 6*A[5]; /* _Michael Somos_, Feb 01 2017 */
%Y A217220 Cf. A217221.
%K A217220 nonn
%O A217220 0,2
%A A217220 _N. J. A. Sloane_, Oct 05 2012