A217234 Triangle of expansion coefficients of the sum of an n X n array with equal top row and left column (extended by the rule of Pascal's triangle) in terms of the top row elements.
1, 1, 4, 1, 12, 6, 1, 40, 20, 8, 1, 140, 70, 30, 10, 1, 504, 252, 112, 42, 12, 1, 1848, 924, 420, 168, 56, 14, 1, 6864, 3432, 1584, 660, 240, 72, 16, 1, 25740, 12870, 6006, 2574, 990, 330, 90, 18, 1, 97240, 48620, 22880, 10010, 4004, 1430, 440, 110, 20
Offset: 1
Examples
1; 1,4; 1,12,6; 1,40,20,8; 1,140,70,30,10; 1,504,252,112,42,12; 1,1848,924,420,168,56,14; 1,6864,3432,1584,660,240,72,16; 1,25740,12870,6006,2574,990,330,90,18; 1,97240,48620,22880,10010,4004,1430,440,110,20;
Crossrefs
Programs
-
Maple
A217234_row := proc(n) local A,r,c,s ; A := array({},1..n,1..n) ; for r from 2 to n do A[r,1] := A[1,r] ; end do: for r from 2 to n do for c from 2 to n do A[r,c] := A[r,c-1]+A[r-1,c] ; end do: end do: s := add(add( A[r,c],c=1..n) ,r=1..n) ; for c from 1 to n do printf("%d,", coeff(s,A[1,c]) ) ; end do: return ; end proc: for n from 1 to 10 do A217234_row(n) ; printf(";\n") ; end do; # R. J. Mathar, Oct 13 2012
-
Mathematica
A217234row [n_] := Module[{A, x, r, c, s }, A = Array[x, {n, n}]; Do[A[[r, 1]] = A[[1, r]], {r, 2, n}]; Do[A[[r, c]] = A[[r, c - 1]] + A[[r - 1, c]], {r, 2, n}, {c, 2, n}]; s = Sum[A[[r, c]], {r, 1, n}, {c, 1, n}]; If[n == 1, {1}, List @@ s /. x[, ] -> 1]]; Table[A217234row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 04 2023, after R. J. Mathar *)
Extensions
Edited by R. J. Mathar, Oct 13 2012
Typo in data corrected by Jean-François Alcover, Nov 04 2023
Comments