cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217234 Triangle of expansion coefficients of the sum of an n X n array with equal top row and left column (extended by the rule of Pascal's triangle) in terms of the top row elements.

Original entry on oeis.org

1, 1, 4, 1, 12, 6, 1, 40, 20, 8, 1, 140, 70, 30, 10, 1, 504, 252, 112, 42, 12, 1, 1848, 924, 420, 168, 56, 14, 1, 6864, 3432, 1584, 660, 240, 72, 16, 1, 25740, 12870, 6006, 2574, 990, 330, 90, 18, 1, 97240, 48620, 22880, 10010, 4004, 1430, 440, 110, 20
Offset: 1

Views

Author

J. M. Bergot, Sep 28 2012

Keywords

Comments

Define a finite n X n square array with indeterminate elements A(1, c), c=1..n in the top row, the same elements A(r,1 ) = A(1,r) in the first column, r=1..n, and the remaining elements defined by the Pascal triangle rule: A(r,c) = A(r,c-1)+A(r-1,c).
The triangle T(n,m) gives the coefficients in the formula Sum_{r=1..n} Sum_{c=1..n} A(r,c) = Sum_{m=1..n} T(n,m) * A(1,m).
It says how many times the first, second, third, etc. element of the first row (or the first column) contributes to the sum of the n X n array.

Examples

			1;
1,4;
1,12,6;
1,40,20,8;
1,140,70,30,10;
1,504,252,112,42,12;
1,1848,924,420,168,56,14;
1,6864,3432,1584,660,240,72,16;
1,25740,12870,6006,2574,990,330,90,18;
1,97240,48620,22880,10010,4004,1430,440,110,20;
		

Crossrefs

Cf. A100320 (2nd column), A000984 (third column), A162551 (third column), A024483 (4th column), A006659 (5th column), A002058 (6th column), A030662 (row sums).

Programs

  • Maple
    A217234_row := proc(n)
        local A,r,c,s ;
        A := array({},1..n,1..n) ;
        for r from 2 to n do
            A[r,1] := A[1,r] ;
        end do:
        for r from 2 to n do
            for c from 2 to n do
                A[r,c] := A[r,c-1]+A[r-1,c] ;
            end do:
        end do:
        s := add(add( A[r,c],c=1..n) ,r=1..n) ;
        for c from 1 to n do
            printf("%d,", coeff(s,A[1,c]) ) ;
        end do:
        return ;
    end proc:
    for n from 1 to 10 do
        A217234_row(n) ;
        printf(";\n") ;
    end do; # R. J. Mathar, Oct 13 2012
  • Mathematica
    A217234row [n_] := Module[{A, x, r, c, s }, A = Array[x, {n, n}]; Do[A[[r, 1]] = A[[1, r]], {r, 2, n}]; Do[A[[r, c]] = A[[r, c - 1]] + A[[r - 1, c]], {r, 2, n}, {c, 2, n}]; s = Sum[A[[r, c]], {r, 1, n}, {c, 1, n}]; If[n == 1, {1}, List @@ s /. x[, ] -> 1]];
    Table[A217234row[n], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 04 2023, after R. J. Mathar *)

Extensions

Edited by R. J. Mathar, Oct 13 2012
Typo in data corrected by Jean-François Alcover, Nov 04 2023