This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A217257 #20 Oct 20 2021 12:37:42 %S A217257 1,1,0,1,1,0,1,2,0,0,1,3,2,0,0,1,4,5,0,0,0,1,5,9,5,0,0,0,0,6,14,14,0, %T A217257 0,0,0,0,6,20,28,14,0,0,0,0,0,0,26,48,42,0,0,0,0,0,0,0,26,74,90,42,0, %U A217257 0,0,0,0,0,0,0,100,164,132,0,0,0,0,0,0,0,0,0,100,264,296,132,0,0,0,0,0,0,0,0,0,0,364,560,428,0,0,0,0,0,0,0,0,0 %N A217257 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >= 1 or if k-n >= 7, T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,3) = T(0,4) = T(0,5) = T(0,6) = 1, T(n,k) = T(n-1,k) + T(n,k-1). %C A217257 A hexagon arithmetic of E. Lucas. %D A217257 E. Lucas, Théorie des nombres, A. Blanchard, Paris, 1958, p.89 %H A217257 E. Lucas, <a href="http://visualiseur.bnf.fr/CadresFenetre?O=NUMM-29021&M=tdm">Théorie des nombres</a>, Tome 1, Jacques Gabay, Paris, p. 89 %F A217257 T(n,n) = A024175(n). %F A217257 T(n,n+1) = A024175(n+1). %F A217257 T(n,n+2) = A094803(n+1). %F A217257 T(n,n+3) = A007070(n). %F A217257 T(n,n+4) = A094806(n+2). %F A217257 T(n,n+5) = T(n,n+6) = A094811(n+2). %F A217257 Sum_{k, 0<=k<=n} T(n-k,k) = A030436(n). %e A217257 Square array begins: %e A217257 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=0 %e A217257 0, 1, 2, 3, 4, 5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=1 %e A217257 0, 0, 2, 5, 9, 14, 20, 26, 26, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ... row n=2 %e A217257 0, 0, 0, 5, 14, 28, 48, 74, 100, 100, 0, 0, 0, 0, 0, 0, 0, ... row n=3 %e A217257 0, 0, 0, 0, 14, 42, 90, 162, 264, 364, 364, 0, 0, 0, 0, 0, ... row n=4 %e A217257 0, 0, 0, 0, 0, 42, 132, 296, 560, 924, 1288, 1288, 0, 0, 0, ... row n=5 %e A217257 ... %Y A217257 Cf. similar sequences: A216230, A216228, A216226, A216238, A216054. %K A217257 nonn,tabl %O A217257 0,8 %A A217257 _Philippe Deléham_, Mar 17 2013 %E A217257 a(69) = 0 deleted by _Georg Fischer_, Oct 16 2021